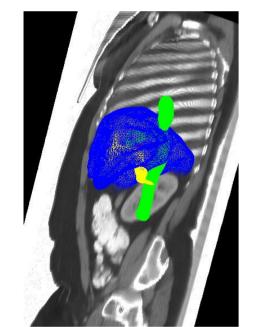
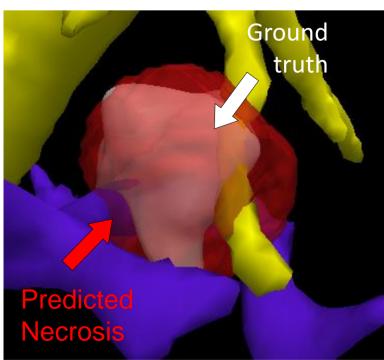


PATIENT-SPECIFIC SIMULATION OF LIVER TUMOR ABLATION


Audigier C.^{1,2}, Mansi T.², Delingette H.¹, Kamen A.², Comaniciu D.², Ayache N.¹

¹ INRIA Sophia-Antipolis, Asclepios Team, Sophia-Antipolis, France ² Siemens Corporate Technology, Imaging and Computer Vision, Princeton, NJ, USA

chloe.audigier@inria.fr


Clinical Background Radio-Frequency Ablation (RFA) is: • A minimally invasive ablative therapy of liver tumor ab • A solution when resection or transplantation are not possible • Problems/Issues: • Rick of recurrence • Incomplete treatments	 blation Technical Background <i>FEM Models :</i> To compute heat diffusion [1] To predict the optimal placement of the probe To predict the state of the cells with Cellular Necrosis Models [2] Problems/Issues: Too slow for planning or guidance
1. Models the time 2. Models the the	Goal patient-specific liver tumor ablation which : ne-varying diffusivity ermal effect of the parenchyma and vasculature allow planning and guidance
Probe location CT images Create Anatomical Model of Heat Trans A two-compartment model • Pennes model in larg The blood temperature is	el [3] ge vessels $\varphi_{vc} = \varphi_{vcin} + \varphi_p$

Create Anatomical Model

- Segmentation of pre-op CT images
- Registration of post-op to pre-op CT images

Results

- Clinical RFA protocol simulated
- 1 minute of ablation is computed in 1.14 minutes

in CT-visible vessels

$$(1 - \epsilon)\rho_t c_t \frac{\partial T}{\partial t} = (1 - \epsilon)Q + (1 - \epsilon)\nabla (d_t \nabla T) + H(T_{b0} - T)$$

Wulff-Klinger model in the small arteries
 The blood and tissue temperatures are assumed to
 be at equilibrium in porous media

$$1 - \epsilon)\rho_t c_t \frac{\partial T}{\partial t} = (1 - \epsilon)Q + (1 - \epsilon)\nabla (d_t \nabla T) - \epsilon \rho_b c_b \mathbf{v} \nabla T$$

Model Parameters

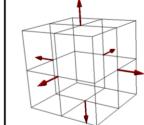
Nominal Parameters from literature [4] used for all patients

Poisson solver in porous media φ_p φ_p

 Flow computation in the vena cava and the portal vein using CFD

 Inside the liver parenchyma using Darcy's law (Porous Media)

Model of Cellular Necrosis


$$\mathbf{A} \xrightarrow[k_b]{k_f(T)} \mathbf{V} \xrightarrow[k_f(T)]{k_f(T)} \mathbf{D}$$

A three-state cell death model to account for tissue necrosis [4]

Lattice Boltzmann Method (LBM)

- Implementation on GPU
- The model is solved on an isotropic Cartesian grid, with LBM [5]. A statistical description of the system is used, f is the distribution function and the governing equation at position x is :

$$\mathbf{f}(\mathbf{x} + \mathbf{e}_{\mathbf{i}}\Delta x, t + \Delta t) = \mathbf{f}(\mathbf{x}, t) + \mathbf{A}[\mathbf{f}^{eq}(\mathbf{x}, t) - \mathbf{f}(\mathbf{x}, t)] + \boldsymbol{\omega}\Delta t H(T_{b0} - T(\mathbf{x}, t))$$

 $f_i^{eq}(\mathbf{x},t) = \omega_i T(\mathbf{x},t) [1 + \frac{\mathbf{e_i} \cdot \mathbf{v}}{cc_s^2}], \, \boldsymbol{\omega} = \{\omega_i\}_{i=1..7}, \, T(\mathbf{x},t) = \sum_{i=1}^7 f_i(\mathbf{x},t)$

Perspectives

Personalization of the important tissue parameters Pre-clinical Validation with extensive New opportunities in RFA planning and guidance

References

Jiang, Y. et al. Formulation of 3D finite elements for hepatic radiofrequency ablation, 2010
 O'Neill, D. et al. A Three-State Mathematical Model of Hyperthermic Cell Death, 2011
 Audigier, C. Lattice Boltzmann Method For Fast Patient-Specific Simulation of Liver Tumor Ablation from CT images
 Payne, S. Image-based multi-scale modelling and validation of RFA in liver tumours, 2011
 Rapaka, S. LBM-EP: LBM for Fast Cardiac Electrophysiology Simulation from 3D Images, 2012