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Abstract

Brain connectivity may be studied with diffusion MR (dMR), tractography and network theory. However, the lack of a standard for
parcellating the neonatal brain leads to the use of atlas- and random-based methods, and thus to the unresolved challenge of
comparing graphs with varying numbers and an unknown correspondence of nodes. We propose a parcellation-independent multi-
scale analysis of network measures and show its potential in describing developmental changes in neonatal serial dMRI data.

Network theory in brains Pre

Divide brain into set of regions Network theory is becoming
more prevalent in neuro-

science, as it:

Allows to analyse complex
systems
- Finds connections in data
- Defines properties of data

Find connectivity, e.g. diffusion MRI points

—> Stochastic parcellation approaches
- o - Relyonfewer assumptions

- High prematurity rate (worldwide ~ 10%)

- Prematurity linked to adverse developmental
outcome (~50%)

- Early intervention and targeted support is desirable

However, no standard set of regions exist for neonates.

- Need to be repeated multiple times for each subject

N

The challenge of comparing networks...
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- As a result, comparing across subjects and
across studies is difficult.

Parcellation-independent Framework

network measures over multiple scales, given by
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Group comparison
A

measure

m(G) = a xlog(N) + b,

scale

where m(G) is a network measure taken on graph G, N is the Netwarkanalysis
mA Multi-scale
number of nodes and a and b are the model parameters i analysis
which are used for group comparison. 2 * e .
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+ Results independent of specific
parcellation

+ Multi-scale analysis,
circumventing number of nodes
bias

* Fitting function is parameter of
framework

- Direct interpretation of results is
difficult




