SIMULTANEOUS RECONSTRUCTION OF THE ACTIVITY IMAGE AND REGISTRATION OF THE CT IMAGE IN TOF-PET

Rezaei A, Nuyts J

Nuclear Medicine, K.U.Leuven, U.Z. Gasthuisberg, B-3000 Leuven, Belgium. (ahmadreza.rezaei@uz.kuleuven.be)

Abstract

- Previously, maximum-likelihood methods have been proposed to jointly estimate the activity image and the attenuation image [1]-[2] (or the attenuation sinogram [3]-[5]) from TOF-PET data.
- In this contribution, we propose a method that addresses the same problem for TOF-PET/CT by combining reconstruction and registration. The method, called MLRR, iteratively reconstructs the activity image while registering the available CT-based attenuation image, so that the pair of activity and attenuation images maximize the likelihood of the TOF emission data.
- With a non-rigid motion model, **MLRR** sequentially updates:
 - 1. Activity using TOF-MLEM
 - 2. Attenuation using MLTR + Demons' Registration [6]-[7]
- The algorithm is accelerated by using Nesterov's momentum and a multi-resolution scheme, which also helps to avoid getting stuck at a local optima.

In clinical PET/CT,

- Introduction
- PET emission data are corrected for attenuation by the projections of the "adjusted" (511 keV photon energy) CT image.
- Problem: between-scan and in-scan motion.
 - 1. PET and CT scans are acquired sequentially.
 - 2. PET data are acquired over a relatively long time interval whereas the CT data are acquired almost instantaneously.

Transformation estimation from emission data:

- Affine transform of a known attenuation image [8]-[9].
 - Problem: stability issues, non-realistic motion model
- TOF information allow estimation of complex motion models

Standard non-TOF PET vs. TOF-PET emission reconstruction:

Conclusion/Discussion

- Our simulations show that the method is able to produce aligned activity and attenuation reconstructions similar to MLAA, with two advantages: 1- the constant/scale problem is solved automatically by using CT-based attenuation coefficients, and 2- the resulting attenuation image is free of noise.
- The activity reconstructions of a 4 min ¹⁸F-FDG clinical scan produced by MLRR suffer less from motion-induced artifacts (arrows in red) than the reference MLEM activity reconstructions.
- The improved alignment of CT and PET might also benefit the diagnostic value of the image pair, which remains to be investigated.

CT1 **MLEM** Mismatched att. MLRR deformed CT1 MLRR 5:24, noise-less data MLRR deformed CT1

Experiment Design/Results

Siemens Biograph mCT:

- 580ps TOF res.
- 13 time-bins of 312ps
- 400 #detectors mashing factor: 2
- 168 #angles

MLRR deformed CT2

MLRR 30:24, moderate-noise data

- [1] A Salomon, et al., 2011, "Simultaneous reconstruction of activity and attenuation for PET/MR", IEEE Trans. Med. Imag.
- [2] A Rezaei, et al., 2012, "Simultaneous Reconstruction of Activity and Attenuation in Time-of-Flight PET", IEEE Trans. Med. Imag.
- [3] M Defrise, et al., 2014, "Transmission-less attenuation correction in time-of-flight PET: analysis of a discrete iterative algorithm", Phys. Med. Biol.
- [4] A Rezaei, et al., 2014, "ML-reconstruction for TOF-PET with simultaneous estimation of the attenuation factors", IEEE Trans. Med. Imag.
- [5] H Li, et al, 2013, "Direct MAP Estimation of Attenuation Sinogram using TOF PET Data and Anatomical Information", Fully3D Imag. Recon.

- [6] JP Thirion, 1998, "Image matching as a diffusion process: an analogy with Maxwell's demons", Med. Image Anal.
- [7] T Vercauteren, et al., 2009, "Diffeomorphic demons: efficient non-parametric image registration", NeuroImage
- [8] F Natterer, 1993, "Determination of tissue attenuation in emission tomography of optically dense media", Inverse Problems
- [9] A Welch, et al., 1998, "Attenuation Correction in PET using Consistency Information", IEEE Trans. Nucl. Sci.
- [10] M Defrise, et al., 2012, "Time-of-Flight PET data determine the attenuation sinogram up to a constant", Phys. Med. Biol.