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1. ABSTRACT 2. METHODS (cont.)

Using statistical shape models to classify

shapes where shape differences are not

readily observed may be complicated, one

Model similarity measures: We

concentrate on the comparison of the

principal components and assume thereadily observed may be complicated, one

example is classification of proximal femur

shape with respect to the fracture risk.

Apart from the issues with model quality,

the classifications made may depend on

principal components and assume the

equality of the model mean shapes for

the sake of simplicity. Principal

components form an orthogonal basis

of a subspace within a high-the classifications made may depend on

the shape model due to the real difference

between model populations. We propose

few simple similarity measures on the

of a subspace within a high-

dimensional Euclidian space of all

shapes S. With each component we

associate a principal vector of thefew simple similarity measures on the

space of models and use them to check if

the model (dis)similarity can explain

difference, resp. conformity, in hip fracture

discrimination from these models.

length equal to the corresponding

eigenvalue. Two different models

and correspond to two subspaces

of S which are not coinciding in general.
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2. MATERIALS AND 

METHODS

discrimination from these models. of S which are not coinciding in general.

It means that some variations caught in

one model may not be explained by the

second one. Let us define , a part)(uD V

Study population: 46 women with fresh

hip fractures (imaged at the non-

fractured site) and 56 controls from

two imaging centers ( .

of variation along the principal axis in

which is not explainable by :
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two imaging centers (EFFECT study [1]).

QCT: 120 kV, 170 mAs, slice thickness: 1

or 1.25 mm, medium reconstruction

kernel.

where is the i-th eigenvector of .

In other words, we measure the length
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kernel.

Image analysis: MIAF-Femur was used

for 3D segmentation and analysis.

Osteophytes were excluded in the

segmentation step. In the fractured

of the vector equal to the

difference between and its best

approximation within , normalized by

the magnitude of the original variation,
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segmentation step. In the fractured

group, left femurs were mirrored to

make pooled analysis of both sides

possible. Image segmentation masks

the magnitude of the original variation,

.The overall unexplainable variation

of the second model is the sum of

unexplainable variations along all

u

possible. Image segmentation masks

(Fig. 1) were used for the shape

analysis. First, a rigid preregistration

step using the binary masks was

performed in order to eliminate

components relative to the total model

variation:
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performed in order to eliminate

differences in the position of the

femurs. Then, all binary masks were

non-rigidly registered to one arbritraily

Even if the principal axes of two

models coincide, variations for a

common principal axis may be different.

i

i∑

non-rigidly registered to one arbritraily

selected reference mask to obtain the

shape models.

Statistical deformation models: 20

datasets from each group were

Let us measure the discrepance

between the variation of (its projected

part ) and the variation in in this

direction by the scale factor bringing

i
u

V

i
u V

iβdatasets from each group were

selected for the test sample set, the

rest was used to form several random

statistical deformation models [2].

direction by the scale factor bringing

onto the ellipsoid of variations in :

. The fracture of the sum of 

the variation discrepances along all 
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statistical deformation models [2].

Models included either unfractured

subjects only (type 1), or a

combination of control and fractured

subjects (type 2). Each model

axes within the total model variation is 

the corresponding measure for whole

.
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subjects (type 2). Each model

consisted of a mean shape and

principal components of the

covariance matrix of shapes, i.e., sets

Model comparison: for each model,

components significant with respect to

the fracture discrimination on the test
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covariance matrix of shapes, i.e., sets

of registration displacement vectors at

each voxel relative to the reference

dataset. Components with the low

energy (i.e., small corresponding

set were determined. Models which

had very similar or, vice versa, most

discrepant discrimination power were

compared using the proposedenergy (i.e., small corresponding

eigenvalues) were excluded.

compared using the proposed

measures. Finally, the model for the

test set was built and checked against

each of the initial models.
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3. RESULTS

[Work in progress]

Fig. 2: Example of shape variation. The Fig. 1: Multiplanar reconstructions of 3D CT Fig. 2: Example of shape variation. The 
largest changes of the voxel position are in 

red, the smallest are in blue. 

Fig. 1: Multiplanar reconstructions of 3D CT 

dataset and coronal reformation of segmentation 

mask (lower right)

4. CONCLUSIONS

Summarizing, we have proposed simple

measures of similarity between

4. CONCLUSIONS

measures of similarity between

statistical shape models and evaluated

their performance by comparing the

computed model difference with the
To visualize the changes in shape that

correspond to a particular principal
correspondent observed difference in

their discrimination power.

Further questions we would like to

address next include: given several

correspond to a particular principal

component, we used shape models in the

generative mode. For this, a mean shape

was first computed by setting weighting

factors for all principal components to 0 address next include: given several

shape models and a target population,

rather different from the model

populations, is it possible to combine

factors for all principal components to 0

(no variations). Then, setting the factor for

the principal component of interest to non-

zero while keeping others fixed to 0, we
the models and estimate whether the

result is more suitable/similar to the

target population?
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the absolute values of vectors constitute a

‘topographic’ map of shape variations.

One such map is visualized on Fig. 2.


