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    As evaluation of our method we used a multi modality dataset 
consisting of CT and as moving images CBCT, MR-T1, MR-T2 scans 
of a porcine head with seven fixed fiducials and known 
registration gold standard. 

ACCURACY MEASUREMENT FOR MULTI-MODAL RIGID REGISTRATION 
USING FEATURE DESCRIPTORS

  Based on the results obtained, defining an automatic accuracy 
measure using feature descriptors can be considered a promising 
method.
  In the pig dataset case, the difference between the fiducial 
registration error (FRE) and our accuracy measurement is in range 
of 1±0.5 mm on sagittal view, 1.1 ± 0.5 mm on coronal and 0.4 ± 
0.2 mm on axial view. This difference can be considered adequate 
for a non-invasive, automatic measure.
  We need to prove our method robustness and accuracy also for 
misregistered cases.
  As future perspective the validation method based on 2D features 
detection could also be elaborated to 3D futures.
  

 In Table 1. the fiducial 
registration error is compared 
by the accuracy measure 
based on features descriptors 
for CT, MR-T1, MR-T2 weighted 
and CBCT images. 
 Each image has isotropic 
1mm3 voxel size, therefore the 
metric of accuracy is mm. 
   Keeping the matching part of 
the algorithm, we compared 
our accuracy results with 
manual landmark based 
accuracy values for ten brain 
patiens. (Table 2.)
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Fig. 3: Representative slices containing features used by visual inspection like bifurcation of bronchus, base of the ribs, 
heart and diaphragm. In first image, a.) the presumtive matches of manual landmarks are represented on overlayed CT and 
CBCT images. Images b.) c.) shows the RANSAC line fitting for eliminate the outliers. The last image, d.) shows the 
corresponding landmarks after eliminating the outliers by RANSAC.

  Furthermore, the robustness of evaluation method was tested on 
10 brain and 25 lung dataset. 
  For registration we used a commercial software, Analyze 11.0. 
Consistently, the CT is the fixed image and depending of the 
anatomical region the moving image is CBCT or MR-T1, MR-T2, MR-
T1 contrast enhanced with Gd.
  After the rigid registration, features on both fixed and moving 
images are located by SURF descriptor[3],[4] on each slice. The 
interest points are distinctive locations like corners, blobs and T-
junctions found by Hessian detector (Fig. 2a-2b). 
  The corresponding points from each image are matched by 
correlation(Fig.  2c). From the presumptive matches found by 
correlation, the outliers have been eliminated by RANdom SAmple 
Consensus (RANSAC) [5] (Fig. 2d-2e, Fig. 3b-3c). 
  The mean euclidean distance between the remained inlier pair 
matches (Fig. 2f, Fig. 3d) will give the accuracy measure of the rigid 
registration.

  In radiotherapy (RT), different image modalities like CT and MRI or 
CBCT help to define tumor structures before applying a high dose of 
ionizing radiation to tumor regions (called target volume). These 
images need to be registered, finding an optimal geometrical 
transformation which aligns one dataset (moving image) with 
corresponding areas into an other dataset (fixed image) taken at 
various point in time or by different scanners [1]. 
  The accuracy of multi-modal image registration is crucial to spare 
the surrounding healthy tissues; therefore a reliable evaluation 
method for registration outcome is needed. 
  The gold standard validation methods are visual inspection by 
experts and fiducial-based evaluation[2]. However visual inspection 
is time consuming and prone to errors. The fiducial-based evaluation 
is an invasive method when fiducial markers are fixated to the bone 
or organs. 
   Therefore, a robust non-invasive automated method is needed for 
validating the registration accuracy in RT.
   The aim of this study is to introduce and evaluate an automatic 
landmark-based accuracy measure using feature descriptors for 
multi-modal rigid registration. 
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Fig. 2. Feature points found by SURF detector on CT, MR-T1 axial slice of a glioma patient (a,b). Presumptive matching of 
the pair-interest points by correlation (c), eliminating outliers by RANSAC (d,e), the resulting, overlayed landmark-pairs, 
after eliminating the outliers from the presumptive match. (f).
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Fig. 1. a.) Porcine phantom with bone fiducials. Finding feature points on b.) CT and c.) MR-T1 coronal slices of the 
pig head phantom. d.) Overlayed CT and MR-T1 images with matched pair-points.

  In absence of fiducial marker data set in clinical cases, the 
accuracy measure have been compared by manual landmark 
based evaluation. 
  Representative slices have been chosen from all image 
modalities to contain features used by radiation oncologist during 
visual inspection. 
  Approximatively on each 10th slice same features were 
manually annotated from all three views. Finding the 
corresponding landmarks from the moving and fixed slices was 
made by the same algorithm as for the automated case.

  The accuracy measure based on feature descriptors was 
calculated for every slide from each three views.
  

Accuracy
measure

Fiducial based SURF based

Modalitie
s

MR- T1 – CT MR-T2 – CT CBCT – CT MR-T1 – CT MR-T2 – CT CBCT – CT

Views S C A S C A S C A S C A S C A S C A
Pig head 1.1

±
0.6

0.9
±
0.4

1.6
±
0.7

1.2
±
0.3

1.9
±
0.7

1.2
±
0.7

1.1
±
0.5

1.8
±
0.7

1.9
±
0.7

2.6
±
1.3

2.6
±
1.2

2.0
±
1.0

2.0
±
1.0

2.6
±
1.6

2.0
±
1.0

2.1
±
0.9

2.9
±
0.9

Table 1: Comparison of accuracy result by the automatic method with fiducial registration error (FRE).

Accuracy
measure

Manual landmark based SURF based

Modaliti
es

MR-T1 – CT MR-T1Gd –
CT

MR-T2 – CT MR-T1 – CT MR-T1Gd –
CT

MR-T2 – CT

Views S C A S C A S C A S C A S C A S C A
Patient1 1.9±

0.4
1.6±
0.6

1.4±
0.8

- 2.0±
0.8

2.4±
0.7

– – – 1.4±
0.8

1.6
±
0.6

2.4
±
0.7

2.0±
0.8

2.4
±
0.7

– –- –

Patient2 1.7±
0.7

2.0±
0.9

1.4±
0.8

2.0±
0.7

1.4±
0.7

2.0±
0.9

– – – 1.4±
0.8

2.0±
0.9

1.7±
0.7

2.0±
0.9

1.4
±
0.7

2.0±
0.7

– – –

Patient3 1.9±
0.7

1.6±
0.7

1.9±
0.8

1.5±
0.9

1.8±
0.9

1.4±
0.8

2.2±
1.9

2.0±
0.8

1.4±
0.8

1.9±
0.8

1.6±
0.7

1.9±
0.7

1.4±
0.8

1.8±
0.9

1.5
±
0.9

1.4±
0.8

2.0±
0.8

2.2±
1.9

Patient4 1.7±
0.6

1.7±
0.8

1.2±
0.8

2.0±
0.8

1.7±
0.7

1.7±
1.1

1.7±
0.5

1.7±
0.6

1.7±
0.5

1.2±
0.8

1.7±
0.8

1.7±
0.6

1.7±
1.1

1.7±
0.7

2.0±
0.8

1.4±
0.8

2.0±
0.6

1.9±
0.5

Patient5 2.1±
0.7

1.4±
0.8

1.2±
0.8

1.9±
0.8

2.0±
0.8

1.9±
0.7

2.0±
0.7

2.0± 1.5±
0.6

1.4±
0.8

1.4
±
0.8

2.1
±
0.7

1.9±
0.7

2.0±
0.8

1.9±
0.8

1.5±
0.6

2.0± 2.0±
0.7

Patient6 1.8±
0.7

1.8±
0.7

1.8±
0.7

1.8±
0.8

1.8±
0.6

1.8±
0.7

– – – 2.0±
1.1

1.8±
1.8

1.9±
1.1

1.8±
1.1

1.7±
0.8

1.8±
1.0

Patient7 1.4±
0.7

1.7±
0.6

1.7±
0.6

1.7±
0.7

1.3±
0.6

1.7±
0.6

2.1±
0.5

2.0± 2.0± 1.0±
0.4

1.0±
0.4

1.8±
1.0

1.0±
0.5

1.0±
0.6

2.0±
0.8

1.0±
0.3

1.4±
0.2

1.0±
0.2

Patient8 1.8±
0.5

0.9±
0.6

1.7±
0.5

1.2±
0.3

0.6±
0.3

1.2±
0.5

– – – 1.7
±
0.5

0.9±
0.6

1.8±
0.5

1.2
±
0.3

0.6±
0.3

1.2±
0.3

– – –

Patient9 1.4±
1.0

1.4±
1.0

2.0±
0.4

2.0±
0.4

1.0±
0.7

1.8±
0.3

1.0±
0.9

2.0±
0.4

1.4±
1.0

1.4±
1.0

1.0±
0.7

2.0±
0.4

1.0±
0.9

1.8±
0.3

Patient
10

2.0±
1.0

2.2±
0.5

1.0±
0.2

1.9±
0.5

1.9±
0.4

2.4±
0.6

– – -- 1.0±
0.2

2.2±
0.5

2.0±
0.8

2.4
±
0.6

1.9±
0.4

1.9±
0.5

– – --

Total 1.8
±

0.7

1.7
±

0.7

1.6
±

0.8

1.9
±

0.8

1.8
±

0.7

1.8
±

0.7

2.1
±

0.6

2.0
±

0.8

1.6
±

0.6

1.7
±
0.6

1.8
±
0.9

1.7
±
0.5

1.8
±
0.7

1.8
±
0.5

1.8
±
0.4

1.3
±
0.7

1.2
±
0.7

1.6
±
0.7

Table 2. Comparison of accuracy results obtained based on automatic method based on feature descriptors and
manual landmark based accuracy for brain clinical dataset. The “--” cell values adduce missing data.


