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Computational Anatomy

Design Mathematical Methods and Algorithms to Model and Analyze the Anatomy

o Statistics of organ shapes across subjects in species, populations, diseases...
« Mean shape
o Shape variability (Covariance)

o Model organ development across time (heart-beat, growth, ageing, ages...)
o Predictive (vs descriptive) models of evolution
o Correlation with clinical variables
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Shapes: forms & deformations

“Shape space” embedding [Kendall]

o Shape = what remains from the object when we remove all
transformations from a given group
o Transformation (rigid, similarity, affine) = nuisance factor
o Shape manifold = quotient of the object manifold by the group action

o Quotient spaces are non-linear (e.g. R"/ scaling = S")
o Kendall size & shape space: (R")Y SO,

Statistics on these non-linear spaces?
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Morphometry through Deformations

Atlas

A
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Skulls of a humnan, a c.himpanzee and a baboon Patient 4
and transformations between them P atient 3

Patient 2

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
o Observation = “random” deformation of a reference template
o Reference template = Mean (atlas)
o Shape variability encoded by the deformations
Statistics on groups of transformations (Lie groups, diffeomorphism)?
Consistency with group operations (hon commutative)?
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Longitudinal deformation analysis
Dynamic obervations

time

Patient A ‘ 7 N /4 A

T

Template

Patient B

How to transport longitudinal deformation across subjects?
What are the convenient mathematical settings?
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Outline

Riemannian frameworks on Lie groups
o Manifolds
o Statistics
o Applications to spine shape & heart remodeling

Lie groups as affine connection spaces
o The bi-invariant affine Cartan connection structure
o Extending statistics without a metric

The SVF framework for diffeomorphisms
o Diffeomorphisms with SVFs
o Longitudinal modeling of brain atrophy in AD
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Differentiable manifolds

Définition:
o Locally Euclidean Topological space

which can be globally curved
o Same dimension + differential regularity

Simple Examples
o Sphere
o Saddle (hyperbolic space)
o Surface in 3D space

And less simple ones
o Projective spaces
o Rotations of R3: SO, ~ P,
o Rigid, affine Transformation
o Diffeomorphisms
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Differentiable manifolds

Computing in a a manifold

o Extrinsic
o« Embedding in R"

o Intrinsic
e Coordinates : charts

e Atlas = consistent set
of charts

o Measuring?

o Volumes (surfaces)
e Lengths

e Straight lines
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Measuring extrinsic distances

Basic tool: the scalar product
<V,W>=V'W

« Norm of a vector
IV[|= < v,v>

« Angle between vectors
<V, w>=cos(e) V|||

« Length of a curve y Y(t)
L(») = [Il 7(t) It
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Measuring extrinsic distances

Basic tool: the scalar product

« Norm of a vector
M, =y<v.v>,

Bernhard Riemann * Angle between VeCtOI’S
1626-1866 <V,W> = cos(a) |v| W,

2
P
v T
A5
o n
. ]
B
B, -

* Length of a curve
L) = [ 7@ Il dt
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Riemannian manifolds

Basic tool: the scalar product
gl t
= <v,w> =vG(p)w

Bernhard Riemann
1826-1866

« Shortest path

. Cﬁiulgfls of variations (E.L.) :
) Leng et htial equation
(sregifies fieselyipfion

__* Free parameters: initial speed
S == and starting point
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Bases of Algorithms in Riemannian Manifolds

Exponential map (Normal coordinate system):
o Exp, = geodesic shooting parameterized by the initial tangent
o Log, = unfolding the manifold in the tangent space along geodesics
o Geodesics = straight lines with Euclidean distance
o Local - global domain: star-shaped, limited by the cut-locus
o Covers all the manifold if geodesically complete

Reformulate algorithms with exp, and log, Xy-
Vector -> Bi-point (no more equivalence classes)
Operation Euclidean space Riemannian
Subtraction xT/ =y—X X_); = |_ogX (y)
Addition y =X+ Xy y = Exp, (xy)
Distance dist(x, y) =|y — | dist(x, y) =||xy
Gradient descent X., =% —€VC(x) X, = EXp, (=& VC(X,))
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Random variable in a Riemannian Manifold

Intrinsic pdf of x
o For every set H

Pexe ) = | pOIAME)
H
n=ebesguye-s-meastre

> Uniform Riemannian Mesure dM(y) = \/det(G(y)) dy

Expectation of an observable in M
0 Exlp] = [, 6(p(»dM(y)
o ¢ = dist? (variance) : Ey[dist(.,y)?] = [, dist(y,2z)*p(z)dM (z)
o ¢ = log(p) (information) : E[log(p)] = [,, p(0)log(p(y))dM(y)

n—¢—=—{rean—FEold=_—3p0dMGy
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First Statistical Tools: Moments

Frechet / Karcher mean minimize the variance

Elx]= argmin (Eldist(y,0?) =  E[xx|= [%x.p,(2)dM(2)=0 [P(C)=0]

Variational characterization: Exponential barycenters

Existence and uniqueness (convexity radius)
[Karcher / Kendall / Le / Afsari]

Empirical mean: almost surely unique!
[Arnaudon & Miclo 2013]

Gauss-Newton Geodesic marching M

K.a=exp, (v) with v=E[yx|=—" Log, (x)
i=1

[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ]
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First Statistical Tools: Moments

Covariance (PCA) [higher moments]

5, =E[&x)&x) |- 1'\[1 (%z)(x2) .p, (2) M(2)

Principal component analysis

o Tangent-PCA: M
principal modes of the covariance y S,

o Principal Geodesic Analysis (PGA) [Fletcher 2004,Sommer 2014]

[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ]
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Distributions for parametric tests

Generalization of the Gaussian density:
O
O
o Maximal entropy knowing the mean and the covariance

LN FZZ(_l)—;RiC-I-O(G)-I-E(G/r)
)= k'exlo((xx) .r.(>—<x)/ 2) k=(27)"".det(Z) V2 1+0(c*)+ (o / 1))

Mahalanobis D2 distance / test: 1L 2(y) = xy Z( D v Xy
o Any distribution: E[,Uf(x)]=
o Gaussian: ,uf (X) oc Zﬁ +0(c?) +5(G/ I’)

[ Pennec, NSIP’99, JMIV 2006 ]
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When the manifold is a Transformation Group

Anatomical variability '*—-?'—- —

through transformations Patient 1 Patient 5
‘/Eﬁ 3 k
' ‘ _ Patient 4
Patient 3
Patient 2

Lie groups: Smooth manifold G with group structure
o Composition g o h and inversion g are smooth
o Leftand Right translation Ly(f)=gof R (f)=fog

Natural Riemannian metric choices
o Chose a metric at Id: <x,y>4

o Propagate at each point g using left (or right) translation
<X, Yy>g = < DLg<-1> X, DLg(-l) Y >4
o Simple implementation (homogeneity) using left (resp. right) translation
EXp; (X):f o EXp)4 (DLf(—l) X) fg=Log,(9) =DL;.Log,(f o g)
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Statistical Analysis of the Scoliotic Spine
[ J. Boisvert et al. ISBI'06, AMDO’06 and IEEE TMI 27(4), 2008 ]
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Sainte-Justine Hospital.

X . 10.5 ld.?ﬁ
o 3D Geometry from multi-planar X-rays ~' 9.50
Mean

o Main translation variability is axial (growth?)
o Main rot. var. around anterior-posterior axis
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Statistical Analysis of the Scoliotic Spine

[ J. Boisvert et al. ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009

PCA of the Covariance: * Mode 1: King's class | or Ill  « Mode 3: King’s class IV + V

4 first variation modes  Mode 2: King’s class I, II, [ll + Mode 4: King's class V (+1)
have clinical meaning
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Morphometry through Deformations

Atlas
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Skulls of a human, a chimpanzee and a baboon
and transformations between them

Patient 4
Patient 2

Patient 3

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
o Observation = “random” deformation of a reference template
o Deterministic template = anatomical invariants [Atlas ~ mean]
o Random deformations = geometrical variability [Covariance matrix]
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Riemannian Metrics on diffeomorphisms

Space of deformations
o Transformation y=¢ (x)
o Curves in transformation spaces: ¢ (X,t)
o Tangent vector = speed vector field V, (X) =

do(x,t)
dt

Right invariant metric HV H I o¢—1
o Lagrangian formalism e e

o Sobolev Norm H, or H,, (RKHS) in LDDMM -> diffeomorphisms
[Miller, Trouve, Younes, Holm, Dupuis, Beg... 1998 — 2009]

o Geometric Mechanics [Arnold, Smale, Souriau, Marsden, Ratiu, Holmes, Michor.. ]

’

Geodesics determined by optimization of1 a time-varying vector field
o Distance d 2(¢0,¢1) = arg min('[“vt“; dt)
Yo

o Geodesics characterized by initial velocity / momentum
o Optimization by shooting/adjoint or path-straightening methods
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Repaired Tetralogy of Fallot

* Severe Congenital Heart Disease

e Occurs 1 of 2500 (Hoffman, JACC 02)

* Surgical repair in infancy

* After repair: chronic pulmonary valve
regurgitations and extremely dilated
right ventricle (RV).

", . Towards
nghf ' f 7 :- the |Ung5

,‘Vir;i\r/i;:le; Incoming
i ; ‘ . blood

Pulmonary Valve

Time: 000ms

Tricuspid Valve

. Right Ventricle
Best time for valve replacement:

understand / quantify the remodeling

http://www-sop.inria.fr/asclepios/projects/Health-e-Child/ShapeAnalysis/index.php
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Repaired Tetralogy of Fallot

Remodeling of the right ventricle of the heart in tetralogy of Fallot

o Mean shape
o Shape variability

o Correlation with clinical variables

o Predicting remodeling effect

“ =

X
Patient: O

Shape of RV in 18 patients
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Atlas and Deformations Joint Estimation

Method: PLS (better than PCA + CCA) to

o Find modes that are significantly correlated to clinical variables
(body surface area, tricuspid and pulmonary valve regurgitations).

o Create a generative model by regressing shape vs BSA

Average RV anatomy
of 18 ToF patients

X. Pennec — MISS, July 30 2014
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Statistical Remodeling of RV In Tetralogy of Fallot
[ Mansi et al, MICCAI 2009, TMI 2011]

WV %

Age: 10 BSA: 0.90m2 Age: 10 BSA: 0.90m2
Predicted remodeling effect ... has a clinical interpretation
™y
Valve Pulmonary RV Septum RV free-
Volume : :
. annuli stenosis pressure pushed wall
increases :
deform reduces decreases inwards outwards
il |
| B ]
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Limits of the Riemannian Framework

No bi-invariant metric in general
o Incompatibility of the Fréechet mean with the group structure
o Left of right metric: different Fréchet means

e The inverse of the mean is not the mean of the inverse

o Examples with simple 2D rigid transformations

o Can we design a mean compatible with the group operations?
o Is there a more convenient structure for statistics on Lie groups?
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Outline

Riemannian frameworks on Lie groups
o Manifolds
o Statistics
o Applications to spine shape & heart remodeling

Lie groups as affine connection spaces
o The bi-invariant affine Cartan connection structure
o Extending statistics without a metric

The SVF framework for diffeomorphisms
o Diffeomorphisms with SVFs
o Longitudinal modeling of brain atrophy in AD

X. Pennec — MISS, July 30 2014
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Basics of Lie groups

Flow of a left invariant vector field X = DL. x starting from e
o y,(t) exists for all time
o One parameter subgroup: y,(s + t) = y,(s). ¥, (t)

Lie group exponential

o Definition: x € g 2 Exp(x) =vy,(1) €G
o Diffeomorphism from a neighborhood of 0 In g to a
neighborhood of e in G (not true in general for inf. dim)

o Baker-Campbell Hausdorff (BCH) formula

1
BCH(x,y) = Log(Exp(x).Exp(y)) =x+y+=[xy]l+ ..

2

3 curves at each point parameterized by the same tangent vector

o Left/ Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?

X. Pennec — MISS, July 30 2014
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Affine connection spaces

Affine Connection (infinitesimal parallel transport)
o Acceleration = derivative of the tangent vector along a curve

o Projection of a tangent space on
a neighboring tangent space

Geodesics = straight lines
o Null acceleration: V;y = 0

o 2" order differential equation:
Normal coordinate system

o Local exp and log maps

Adapted from Lé Nguyén Hoang, science4all.org
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Cartan-Schouten Connection on Lie Groups

A unique connection
o Symmetric (no torsion) and bi-invariant

o For which geodesics through Id are one-parameter

subgroups (group exponential)
e Matrices : M(t) = A.exp(t.V)
o Diffeos : translations of Stationary Velocity Fields (SVFs)

Levi-Civita connection of a bi-invariant metric (if it exists)

o Continues to exists in the absence of such a metric
(e.qg. for rigid or affine transformations)

Two flat connections (left and right)
o Absolute parallelism: no curvature but torsion (Cartan / Einstein)
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Statistics on an affine connection space

Eréchetmean: exponential barycenters

O Zi Lng(yi) =0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]
o Existence & local uniqueness if local convexity [Arnaudon & Li, 2005]

For Cartan-Schouten connections [Pennec & Arsigny, 2012]

o Locus of points x such that Y Log(x~1.y;,) =0
o Algorithm: fixed point iteration (local convergence)

1
Xer1 = X¢ o Exp (Ez Log(x:*.y) )

o Mean stable by left / right composition and inversion
o If mis a mean of {g;} and h is any group element, then
hom is a mean of {h o g;} , m o h is a mean of the points {g; o h}

and m1 is a mean of {gi(_l)}
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Special matrix groups

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group)
o No bi-invariant metric
o Group geodesics defined globally, all points are reachable

o Existence and uniqueness of bi-invariant mean (closed form resp.
solvable)

Rigid-body transformations

o Logarithm well defined iff log of rotation part is well defined,
l.e. if the 2D rotation have angles |6;| < &

o Existence and uniqueness with same criterion as for rotation parts
(same as Riemannian)

Invertible linear transformations

o Logarithm unique if no complex eigenvalue on the negative real line
o Generalization of geometric mean (as in LE case but different)
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eneralization of the Statistical Framework

riance matrix & higher order moments
Defined as tensors in tangent space

Y= [Log,(y) ® Log,(y) u(dy)

Matrix expression changes
ccording to the basis

Othger statistical tools

Mahalanobis distance well defined and bhi-invariant

o Principal Geodesic Analysis (PGA), provided a data likelihood
o Independent Component Analysis (ICA)
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Cartan Connections vs Riemannian

What i1s similar

o Standard differentiable geometric structure [curved space without torsion]
o Normal coordinate system with Exp, et Log, [finite dimension]

Limitations of the affine framework

o No metric (but no choice of metric to justify)

o The exponential does always not cover the full group
« Pathological examples close to identity in finite dimension
e In practice, similar limitations for the discrete Riemannian framework

What we gain

o A globally invariant structure invariant by composition & inversion
o Simple geodesics, efficient computations (stationarity, group exponential)
o The simplest linearization of transformations for statistics?
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Outline

Riemannian frameworks on Lie groups
o Manifolds
o Statistics
o Applications to spine shape & heart remodeling

Lie groups as affine connection spaces
o The bi-invariant affine Cartan connection structure
o Extending statistics without a metric

The SVF framework for diffeomorphisms
o Diffeomorphisms with SVFs
o Longitudinal modeling of brain atrophy in AD

X. Pennec — MISS, July 30 2014
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The SVF framework for Diffeomorphisms

Framework of [Arsigny et al., MICCAI 06]
o Use one-parameter subgroups

Exponential of a smooth vector field is a diffeomorphism
o U IS a smooth stationary velocity field
o Exponential: solution at time 1 of ODE ox(t) / ot = u( x(t) )

Stationary velocity field Diffeomorphism
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The SVF framework for Diffeomorphisms

Efficient numerical methods
o Take advantage of algebraic properties of exp and log.
o exp(t.V) is a one-parameter subgroup.

— Direct generalization of numerical matrix algorithms.

Efficient parametric diffeomorphisms

o Computing the deformation: Scaling and squaring
recursive use of exp(v)=exp(v/2) o exp(v/2)
[Arsigny MICCAI 2006]

o Updating the deformation parameters:
BCH formula [Bossa MICCAI 2007]

exp(v) o exp(eu) = exp(v + €u + [v,eu]/2 + [v,[v,eu]}/[12 + ... )
o Lie bracket [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

I
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Symmetric log-demons [Vercauteren MICCAI 08]

|dea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
o Parameterize the deformation by SVFs
o Time varying (LDDMM) replaced by stationary vector fields
o Efficient scaling and squaring methods to integrate autonomous ODEs

Log-demons with SVFs

7\

1 1
E(V,Ve) = = |IF = M oexp(ve)l7, + —5 [[log(exp(—v) o exp(ve))llz, + R(V)

. L ! —
Similarity Coupling Regularisation
Measures how much the Couples the correspondences Ensures
two images differ with the smooth deformation deformation

- . : smoothness
o Efficient optimization with BCH formula

o Inverse consistent with symmetric forces
o Open-source ITK implementation [ T Vercauteren, et al.. Symmetric

 Very fast Log-Domain Diffeomorphic
o http://hdl.handle.net/10380/3060 Registration: A Demons-based

Approach, MICCAI 2008 ]

X. Pennec — MISS, July 30 2014
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Longitudinal structural damage
In Alzheimer’s Disease

baseline 2 years follow-up

'Widespread cortical thinning
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Measuring Temporal Evolution with deformations

Fast registration with deformation parameterized by SVF

@:(x) = exp(t.v(x))

https://team.inria.fr/asclepios/software/lcclogdemons/

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]
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Longitudinal deformation analysis in AD

o From patient specific evolution to population trend
(parallel transport of deformation trajectories)

o Inter-subject and longitudinal deformations are of different nature
and might require different deformation spaces/metrics

Template
Patient B
PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)
I B ]
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Parallel transport of deformations

Encode longitudinal deformation by its initial tangent (co-) vector
o Momentum (LDDMM) / SVF

Parallel transport
o (small) longitudinal deformation vector
o along the large inter-subject normalization deformation

Existing methods
o Vector reorientation with Jacobian of inter-subject deformation
o Conjugate action on deformations (Rao et al. 2006)
o Resampling of scalar maps (Bossa et al, 2010)

o LDDMM setting: parallel transport along geodesics via Jacobi fields
[Younes et al. 2008]

Intra and inter-subject deformations/metrics are of different nature
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Parallel transport along arbitrary curves

Infinitesimal parallel transport = connection
V(X)) TM>TM

A numerical scheme to integrate for symmetric connections:
Schild’s Ladder [Elhers et al, 1972]

o Build geodesic parallelogrammoid
o Iterate along the curve
Pl A oP’l

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]
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Parallel transport along geodesics

Along geodesics: Pole Ladder [Lorenzi et al, IMIV 2013]

[Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 2013, to appear ]
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Efficient Pole and Schild’s Ladder with SVFs

To o Exp(IT(u)) Ty

Exp(IT(u)) =Exp(v/2) o Exp(u) o Exp(—v/2)

Ig i

Exp(u)

Numerical scheme
o Direct computation 17..,;(u) = D (Exp(v)) Exp(_s) % © Bxp(—v)

O USing the BCH: Hpeu(u)= u+ [v,u] + %[-U[*u:u]]

[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]
Runner-up for the IPMI Erbsmann 2011 prize

X. Pennec — MISS, July 30 2014 54



Analysis of longitudinal datasets
Multilevel framework

R, PA(X,t)

» \%7

Gl L DB(x,t)

X. Pennec — MISS, July 30 2014

Single-subject, two time points

Log-Demons (LCC criteria)

Single-subject, multiple time points

4D registration of time series within the

Log-Demons registration.

Multiple subjects, multiple time points

Pole or Schild’s Ladder

[Lorenzi et al, in Proc. of MICCAI 2011]
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Longitudinal model for AD

Estimated from 1 year changes — Extrapolation to 15 years
70 AD subjects (ADNI data)

-/ 6 5 4 -3 -2 -1 0 1 2 3 4 5 6 7

year | |
Extrapolated Observed Extrapolated
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Longitudinal changes in Alzheimer’s disease

(141 subjects — ADNI data)

Student’s
t statistic
15 5 5

o 15 :
Expansion s ressssssssmmm—— Contraction
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Study of prodromal Alzheimer’s disease

o 98 healthy subjects, 5 time points (0 to 36 months).
o 41 subjects AB42 positive (“at risk” for Alzheimer’s)
o Q: Different morphological evolution for A+ vs AB-?

Year 1 MRS, T

Average SVF
for normal
evolution (AB-)

|Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011|
60

X. Pennec — MISS, July 30 2014



Time: years

AB42- AB42+
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Study of prodromal Alzheimer’s disease

Linear regression of the SVF over time: interpolation + prediction

AB42-
progression

AB42+

additional
progression

AB42- vs AB42+

progression |
differences
0

AD
additional
progression

Multivariate group-wise comparison
of the transported SVFs shows

: — ’ statistically significant differences
T()=Exp(v(t)*T, (nothing significant on log(det) )

|Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
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Group-wise flux analysis in Alzheimer’s

disease: Quantification
From group-wise...

...1o subject specific

(a b ?:1 e
Cfé 54; g%s 4

” e
3

sample size o sd/(mean,-mean,) Effect size on left hippocampus

Regional flux Hiparitrvocsrr]r;pal Group six months oneyear two years
(all regions) (D[i'}fe;:‘egni‘ﬁgll\“ INRIA - Regional Flux 1.02 1.33 1.47
S NIBAD’12 Challenge:
I@Enzfo,s HERTERARL I Top-ranked on Hippocampal atrophy measures
MCI vs 277 [166,555] 545 [296, 1331]

63
controls



A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

o One affine transformation per region (polyaffines transformations)
o Cardiac motion tracking for each subject [McLeod, Miccai 2013]

Log demons projected but with 204 parameters instead of a few millions

AHA regions Stationary velocity fields Diffeomorphism
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A powerful framework for statistics

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09]

o One affine transformation per region (polyaffines transformations)
o Cardiac motion tracking for each subject [McLeod, Miccai 2013]
Log demons projected but with 204 parameters instead of a few millions

o Group analysis using tensor reduction : reduced model
8 temporal modes x 3 spatial modes = 24 parameters (instead of 204)

Evolution of principal time modes
40;

20. Systole Diastole
parameters /" —=
A, 20t , Mode 1
/ Mode 2
-40} / Mode 3|
‘ Mode 4‘
60 / Mode 5|
80| i —Mode &
0 10 20 \— Mode 7‘
Frame | ——Mode8|
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Hierarchical Estimation of the Variability

Oriented bounding boxes Weights Structure FHrst mode of variation

stdev: -2.00

V Global
scaling

Level O
stdev: -2.00
Level 1 N
Thickness
stdev: -2.00
Level 2 \\
\ Angle and
ramus
47 subjects [Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]
| - TTT———
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Hierarchical Estimation of the Variability

stdev: -2.00

A \Y/

Level 3
Two sides
stdev: -2.00 -
Level 4
Level 5
47 subjects [Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012]
| - TT——
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Which space for anatomical shapes?

Physics

o Homogeneous space-time structure at large
scale (universality of physics laws)
[Einstein, Well, Cartan...]

o Heterogeneous structure at finer scales:
embedded submanifolds (filaments...)

The universe of anatomical shapes?
o Affine, Riemannian of fiber bundle structure?

o Learn locally the topology and metric
o Very High Dimensional Low Sample size setup
o Geometric prior might be the key!
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Advertisement

Mathematical Foundations of Computational Anatomy
Workshop at MICCAI (last edition in Nagoya 2013)

Mathematical foundations

Proceedings of previous editions:
http://hal.inria.fr/MFCA/

http://www-sop.inria.fr/asclepios/events/MFCA13/
http://www-sop.inria.fr/asclepios/events/MFCA11/
http://www-sop.inria.fr/asclepios/events/MFCAO8/

http://www-sop.inria.fr/asclepios/events/MFCAQ06/
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« Medical image processing and visualization software
« Open-source, BSD license

« Extensible via plugins

« Provides high-level algorithms to end-users

« Ergonomic and reactive user interface

Available registration algorithms :
« Diffeomorphic Demons
« Incompressible Log Demons
« LCC Log Demons

NS http://med.inria.fr

INRIA teams involved: Asclepios, Athena, Parietal, Visages



http://med.inria.fr/

