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Design Mathematical Methods and Algorithms to Model and Analyze the Anatomy 
 

 Statistics of organ shapes across subjects in species, populations, diseases…  
 Mean shape 

 Shape variability (Covariance) 
 

 Model organ development across time (heart-beat, growth, ageing, ages…) 

 Predictive (vs descriptive) models of evolution 

 Correlation with clinical variables 

Computational Anatomy 



Shapes: forms & deformations 

“Shape space” embedding [Kendall] 

 Shape = what remains from the object when we remove all 

transformations from a given group 

 Transformation (rigid, similarity, affine) = nuisance factor 

 Shape manifold =  quotient of the object manifold by the group action 

 Quotient spaces are non-linear (e.g. Rn / scaling = Sn) 

 Kendall size & shape space:  (Rn)d/ SOn  
 

Statistics on these non-linear spaces? 
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Morphometry through Deformations 
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller] 

 Observation = “random” deformation of a reference template  

 Reference template = Mean (atlas) 

 Shape variability encoded by the deformations 

Statistics on groups of transformations (Lie groups, diffeomorphism)? 

Consistency with group operations (non commutative)? 
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Longitudinal deformation analysis 

8 

time 

Dynamic obervations 

How to transport longitudinal deformation across subjects? 

What are the convenient mathematical settings?   
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Patient A 

Patient B 

? ? Template 
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Outline 

Riemannian frameworks on Lie groups 

 Manifolds 

 Statistics 

 Applications to spine shape & heart remodeling  

 

Lie groups as affine connection spaces 

 The bi-invariant affine Cartan connection structure 

 Extending statistics without a metric 

 

The SVF framework for diffeomorphisms 

 Diffeomorphisms with SVFs 

 Longitudinal modeling of brain atrophy in AD 

 



Differentiable manifolds 

Définition: 

 Locally Euclidean Topological space  

which can be globally curved 

 Same dimension + differential regularity 
 

Simple Examples 

 Sphere 

 Saddle (hyperbolic space) 

 Surface in 3D space  

 

And less simple ones 

 Projective spaces 

 Rotations of R3 : SO3 ~ P3 

 Rigid, affine Transformation 

 Diffeomorphisms 
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Differentiable manifolds 

Computing in a a manifold 

 Extrinsic 
 Embedding in ℝ𝑛 

 

 Intrinsic 
 Coordinates : charts 

 Atlas = consistent set  

of charts 
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 Measuring? 
 Volumes (surfaces) 

 Lengths 

 Straight lines 

 



g(t) 

dttL  ||)(||)( gg 

• Length of a curve 

Measuring extrinsic distances 

Basic tool: the scalar product 
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wvwv t ,

w 

wvwv   )cos(, 

• Angle between vectors 

• Norm of a vector 

 vvv ,

p 

v 



Bernhard Riemann  

1826-1866 

Measuring extrinsic distances 

Basic tool: the scalar product 
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wvwv t ,
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• Angle between vectors 

dttL t  ||)(||)( )( ggg 

• Length of a curve 

• Norm of a vector 

pp
vvv  ,

Bernhard Riemann  

1826-1866 

wpGvwv t

p )(, 



wpGvwv t

p )(, 

Bernhard Riemann  

1826-1866 

Riemannian manifolds 

Basic tool: the scalar product 
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dttL t  ||)(||)( )( ggg 

• Length of a curve 

Bernhard Riemann  

1826-1866 

• Geodesic between 2 points 

• Shortest path 

• Calculus of variations (E.L.) : 

2nd order differential equation 

(specifies acceleration) 

• Free parameters: initial speed 

and starting point  
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Bases of Algorithms in Riemannian Manifolds 

Operation Euclidean space Riemannian 

Subtraction 

Addition 

Distance 

Gradient descent )( ttt xCxx  

)(yLogxy x

xyxy 

xyyx ),(dist
x

xyyx ),(dist

)(xyExpy x

))( ( txt xCExpx
t

 

xyxy 

Reformulate algorithms with expx and logx 

Vector -> Bi-point (no more equivalence classes) 
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Exponential map (Normal coordinate system): 

 Expx = geodesic shooting parameterized by the initial tangent 

 Logx = unfolding the manifold in the tangent space along geodesics  

 Geodesics = straight lines with Euclidean distance  

 Local  global domain: star-shaped, limited by the cut-locus  

 Covers all the manifold if geodesically complete 



Random variable in a Riemannian Manifold 

Intrinsic pdf of x 

 For every set H  

𝑃 𝐱 ∈ 𝐻 =  𝑝 𝑦 𝑑𝑀(𝑦)
𝐻

 

 Lebesgue’s measure  

 Uniform Riemannian Mesure 𝑑𝑀 𝑦 = det 𝐺 𝑦 𝑑𝑦 

 
 

Expectation of an observable in M 

  𝑬𝐱 𝜙 =  𝜙 𝑦 𝑝 𝑦 𝑑𝑀 𝑦
𝑀

 

 𝜙 = 𝑑𝑖𝑠𝑡2 (variance) :  𝑬𝐱 𝑑𝑖𝑠𝑡 . , 𝑦
2 =  𝑑𝑖𝑠𝑡 𝑦, 𝑧 2𝑝 𝑧 𝑑𝑀(𝑧)

𝑀
 

 𝜙 = log 𝑝  (information) :  𝑬𝐱 log 𝑝 =  𝑝 𝑦 log (𝑝 𝑦 )𝑑𝑀 𝑦
𝑀

 

 𝜙 = 𝑥 (mean) :  𝑬𝐱 𝐱 =  𝑦 𝑝 𝑦 𝑑𝑀 𝑦
𝑀
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First Statistical Tools: Moments 

Frechet / Karcher mean minimize the variance 

 
 Variational characterization: Exponential barycenters 

 Existence and uniqueness (convexity radius) 

[Karcher / Kendall / Le / Afsari] 

 Empirical mean: almost surely unique!  

[Arnaudon & Miclo 2013] 
 

 

Gauss-Newton Geodesic marching 
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[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ] 
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First Statistical Tools: Moments 

Covariance (PCA) [higher moments] 

 

 

 

 

Principal component analysis 

 Tangent-PCA: 

    principal modes of the covariance 

 Principal Geodesic Analysis (PGA) [Fletcher 2004,Sommer 2014]  

 

      
M

M )().(.x.xx.xE  
TT

zdzpzz xxx xx
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[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ] 
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Distributions for parametric tests 

 

Generalization of the Gaussian density: 

 Stochastic heat kernel p(x,y,t) [complex time dependency]  

 Wrapped Gaussian [Infinite series difficult to compute] 

 Maximal entropy knowing the mean and the covariance 

 

 

 

 

 

Mahalanobis D2 distance / test: 
 

 Any distribution: 
 

 Gaussian: 

    






 2/x..xexp.)(
T

xΓxkyN
      rOk

n
/1.)det(.2 32/12/

  
Σ

   rO /  Ric
3

1)1(   
ΣΓ

yx..yx)y( )1(2  xxx

t



  n)(E 2
xx

 rOn /)()( 322  xx

[ Pennec, NSIP’99, JMIV 2006 ] 
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When the manifold is a Transformation Group 

Anatomical variability  

through transformations 

 

 

 
 

Lie groups: Smooth manifold G with group structure 

 Composition g o h and inversion g-1 are smooth 

 Left and Right translation Lg(f) = g o f    Rg (f) = f o g 

 

Natural Riemannian metric choices 

 Chose a metric at Id: <x,y>Id 

 Propagate at each point g using left (or right) translation 

<x,y>g = < DLg
(-1)

 .x , DLg
(-1)

 .y >Id 

 Simple implementation (homogeneity) using left (resp. right) translation 
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  g)(f.LogDL  (g)Log  fg          x).DL(Expf  xExp 1)(

Idffff 1)(   Id
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Statistical Analysis of the Scoliotic Spine 

Database 

 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital. 

 3D Geometry from multi-planar X-rays 

Mean 

 Main translation variability is axial (growth?) 

 Main rot. var. around anterior-posterior axis  

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ] 
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Statistical Analysis of the Scoliotic Spine 

• Mode 1: King’s class I or III 

• Mode 2: King’s class I, II, III  

• Mode 3: King’s class IV + V 

• Mode 4: King’s class V (+II) 

PCA of the Covariance:  
4 first variation modes  

have clinical meaning 

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ] 

AMDO’06 best paper award, Best French-Quebec joint PhD 2009 



Morphometry through Deformations 
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller] 

 Observation = “random” deformation of a reference template  

 Deterministic template = anatomical invariants [Atlas ~ mean] 

 Random deformations = geometrical variability [Covariance matrix] 

 

Patient 3 

Atlas 

Patient 1 

Patient 2 

Patient 4 

Patient 5 


1  


2  


3  


4  


5  



Riemannian Metrics on diffeomorphisms 

Space of deformations 

 Transformation y= (x) 

 Curves in transformation spaces:  (x,t) 

 Tangent vector = speed vector field  

 

Right invariant metric  

 Lagrangian formalism 

 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms  
[Miller, Trouve, Younes, Holm, Dupuis, Beg… 1998 – 2009] 

 Geometric Mechanics [Arnold, Smale, Souriau, Marsden, Ratiu, Holmes, Michor…] 

 

Geodesics determined by optimization of a time-varying vector field 

 Distance 
 

 Geodesics characterized by initial velocity / momentum 

 Optimization by shooting/adjoint or path-straightening methods 

dt

txd
xvt

),(
)(




Id
ttt vv

t

1
 




)(minarg),(

1

0

2

10

2 dtvd
tt

t
v 



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Repaired Tetralogy of Fallot 

• Severe Congenital Heart Disease 
• Occurs 1 of 2500 (Hoffman, JACC 02) 
• Surgical repair in infancy 
• After repair: chronic pulmonary valve 

regurgitations and extremely dilated 
right ventricle (RV).  

Right Ventricle 

Incoming 
blood 

Tricuspid Valve 

Pulmonary Valve 

Towards 
the lungs 

Best time for valve replacement: 

understand / quantify the remodeling 

http://www-sop.inria.fr/asclepios/projects/Health-e-Child/ShapeAnalysis/index.php 
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Shape of RV in 18 patients 

Repaired Tetralogy of Fallot 

Remodeling of the right ventricle of the heart in tetralogy of Fallot 

 Mean shape 

 Shape variability 

 Correlation with clinical variables 

 Predicting remodeling effect 
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Atlas and Deformations Joint Estimation 

Average RV anatomy 
of 18 ToF patients 10 Deformation Modes = 90% of spectral energy 

Method: PLS (better than PCA + CCA) to 

 Find modes that are significantly correlated to clinical variables 

(body surface area, tricuspid and pulmonary valve regurgitations). 

 Create a generative model by regressing shape vs BSA 

6 modes significantly correlated to BSA 

[ Mansi et al, MICCAI 2009, TMI 2011] 
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Statistical Remodeling of RV in Tetralogy of Fallot 

Predicted remodeling effect  

[ Mansi et al, MICCAI 2009, TMI 2011] 

Volume 
increases 

Valve 
annuli 
deform 

Pulmonary 
stenosis 
reduces 

RV 
pressure 

decreases 

Septum 
pushed 
inwards 

RV free-
wall 

outwards 

… has a clinical interpretation 



Limits of the Riemannian Framework 

No bi-invariant metric in general  

 Incompatibility of the Fréchet mean with the group structure 

 Left of right metric: different Fréchet means 

 The inverse of the mean is not the mean of the inverse  

 Examples with simple 2D rigid transformations 

 

 

 Can we design a mean compatible with the group operations? 

 Is there a more convenient structure for statistics on Lie groups? 
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Outline 

Riemannian frameworks on Lie groups 

 Manifolds 

 Statistics 

 Applications to spine shape & heart remodeling  

 

Lie groups as affine connection spaces 

 The bi-invariant affine Cartan connection structure 

 Extending statistics without a metric 

 

The SVF framework for diffeomorphisms 

 Diffeomorphisms with SVFs 

 Longitudinal modeling of brain atrophy in AD 

 



Basics of Lie groups 

Flow of a left invariant vector field 𝑋 = 𝐷𝐿. 𝑥 starting from e 

 𝛾𝑥 𝑡  exists for all time 

 One parameter subgroup: 𝛾𝑥 𝑠 + 𝑡 = 𝛾𝑥 𝑠 . 𝛾𝑥 𝑡   

Lie group exponential 

 Definition: 𝑥 ∈ 𝔤  𝐸𝑥𝑝 𝑥 = 𝛾𝑥 1  𝜖 𝐺  

 Diffeomorphism from a neighborhood of 0 in g to a 

neighborhood of e in G (not true in general for inf. dim) 

 Baker-Campbell Hausdorff (BCH) formula 

𝐵𝐶𝐻 𝑥, 𝑦 = 𝐿𝑜𝑔 𝐸𝑥𝑝 𝑥 . 𝐸𝑥𝑝 𝑦 = 𝑥 + 𝑦 +
1

2
𝑥, 𝑦 + … 

3 curves at each point parameterized by the same tangent vector 

 Left / Right-invariant geodesics, one-parameter subgroups 

Question: Can one-parameter subgroups be geodesics? 
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Affine connection spaces 

Affine Connection (infinitesimal parallel transport) 

 Acceleration = derivative of the tangent vector along a curve 

 Projection of a tangent space on  

a neighboring tangent space  

 

 

 

Geodesics = straight lines 

 Null acceleration: 𝛻𝛾 𝛾 = 0 

 2nd order differential equation: 

Normal coordinate system 

 Local exp and log maps 
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Adapted from Lê Nguyên Hoang, science4all.org 



Cartan-Schouten Connection on Lie Groups 

A unique connection 

 Symmetric (no torsion) and bi-invariant 

 For which geodesics through Id are one-parameter 

subgroups (group exponential) 
 Matrices : M(t) = A.exp(t.V) 

 Diffeos : translations of Stationary Velocity Fields (SVFs)   

 

Levi-Civita connection of a bi-invariant metric (if it exists) 

  Continues to exists in the absence of such a metric 

(e.g. for rigid or affine transformations) 
 

Two flat connections (left and right) 

 Absolute parallelism: no curvature but torsion (Cartan / Einstein) 
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Statistics on an affine connection space 
 

Fréchet mean: exponential barycenters 

  𝐿𝑜𝑔𝑥 𝑦𝑖𝑖 = 0               [Emery, Mokobodzki 91, Corcuera, Kendall 99] 

 Existence & local uniqueness if local convexity [Arnaudon & Li, 2005] 
 

 

For Cartan-Schouten connections  [Pennec & Arsigny, 2012]  

 Locus of points x such that    𝐿𝑜𝑔 𝑥−1. 𝑦𝑖 = 0  

 Algorithm: fixed point iteration (local convergence) 

𝑥𝑡+1 = 𝑥𝑡 ∘ 𝐸𝑥𝑝
1

𝑛
 𝐿𝑜𝑔 𝑥𝑡

−1. 𝑦𝑖   

 Mean stable by left / right composition and inversion  

 If 𝑚 is a mean of 𝑔𝑖  and ℎ is any group element, then  

ℎ ∘ 𝑚 is a mean of ℎ ∘ 𝑔𝑖  , 𝑚 ∘ ℎ is a mean of the points 𝑔𝑖 ∘ ℎ   

and 𝑚(−1) is a mean of 𝑔
𝑖
(−1)  
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Special matrix groups 

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group) 

 No bi-invariant metric  

 Group geodesics defined globally, all points are reachable 

 Existence and uniqueness of bi-invariant mean (closed form resp. 

solvable)  

Rigid-body transformations  

 Logarithm well defined iff log of rotation part is well defined,  

i.e. if the 2D rotation have angles 𝜃𝑖 <  𝜋 

 Existence and uniqueness with same criterion as for rotation parts 

(same as Riemannian) 

Invertible linear transformations 

 Logarithm unique if no complex eigenvalue on the negative real line  

 Generalization of geometric mean (as in LE case but different) 
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Generalization of the Statistical Framework 
 

Covariance matrix & higher order moments 

 Defined as tensors in tangent space 
 

          Σ =  𝐿𝑜𝑔𝑥 𝑦 ⊗ 𝐿𝑜𝑔𝑥 𝑦  𝜇(𝑑𝑦) 
 

 Matrix expression changes 

according to the basis 

 

 

 

Other statistical tools 

 Mahalanobis distance well defined and bi-invariant 

 Tangent Principal Component Analysis (t-PCA) 

 Principal Geodesic Analysis (PGA), provided a data likelihood 

 Independent Component Analysis (ICA) 

 
X. Pennec – MISS, July 30 2014 39 



40 

Cartan Connections vs Riemannian 

What is similar 
 Standard differentiable geometric structure [curved space without torsion]  

 Normal coordinate system with Expx et Logx [finite dimension] 

 

Limitations of the affine framework 

 No metric (but no choice of metric to justify) 

 The exponential does always not cover the full group 

 Pathological examples close to identity in finite dimension 

 In practice, similar limitations for the discrete Riemannian framework  

What we gain 

 A globally invariant structure invariant by composition & inversion  

 Simple geodesics, efficient computations (stationarity, group exponential)  

 The simplest linearization of transformations for statistics?  
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Outline 

Riemannian frameworks on Lie groups 

 Manifolds 

 Statistics 

 Applications to spine shape & heart remodeling  

 

Lie groups as affine connection spaces 

 The bi-invariant affine Cartan connection structure 

 Extending statistics without a metric 

 

The SVF framework for diffeomorphisms 

 Diffeomorphisms with SVFs 

 Longitudinal modeling of brain atrophy in AD 
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The SVF framework for  Diffeomorphisms 

Framework of [Arsigny et al., MICCAI 06] 

 Use one-parameter subgroups 
 

Exponential of a smooth vector field is a diffeomorphism 

 u is a smooth stationary velocity field 

 Exponential: solution at time 1 of ODE ∂x(t) / ∂t = u( x(t) ) 

•exp 

Stationary velocity field Diffeomorphism 

X. Pennec – MISS, July 30 2014 
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Efficient numerical methods 

 Take advantage of algebraic properties of exp and log. 

 exp(t.V) is a one-parameter subgroup. 

→ Direct generalization of numerical matrix algorithms. 

 

Efficient parametric diffeomorphisms 

 Computing the deformation: Scaling and squaring  

 recursive use of exp(v)=exp(v/2) o exp(v/2) 

 [Arsigny MICCAI 2006] 

 

 Updating the deformation parameters:  
BCH formula [Bossa MICCAI 2007] 
 

exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … ) 

 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p) 

 

 

The SVF framework for  Diffeomorphisms 

X. Pennec – MISS, July 30 2014 
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Symmetric log-demons [Vercauteren MICCAI 08] 

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007] 

 Parameterize the deformation by SVFs  

 Time varying (LDDMM) replaced by stationary vector fields 

 Efficient scaling and squaring methods to integrate autonomous ODEs 
 

 

Log-demons with SVFs 

 

 

 

 
 Efficient optimization with BCH formula 

 Inverse consistent with symmetric forces 

 Open-source ITK implementation 

 Very fast  

 http://hdl.handle.net/10380/3060  
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Similarity 

Measures how much the 

two images differ 

Coupling 

Couples the correspondences  

with the smooth deformation 

Regularisation 

Ensures 

deformation 

smoothness 

[ T Vercauteren, et al.. Symmetric 

Log-Domain Diffeomorphic 

Registration: A Demons-based 

Approach, MICCAI 2008 ] 



Longitudinal structural damage  

in Alzheimer’s Disease 

baseline 2 years follow-up 

Ventricle’s expansion Hippocampal atrophy Widespread cortical thinning 
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Fast registration with deformation parameterized by SVF 
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Measuring Temporal Evolution with deformations 

𝝋𝒕 𝒙 = 𝒆𝒙𝒑(𝒕. 𝒗 𝒙 ) 

https://team.inria.fr/asclepios/software/lcclogdemons/ 

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ] 



Longitudinal deformation analysis in AD 

 From patient specific evolution to population trend 

(parallel transport of deformation trajectories)  

 Inter-subject and longitudinal deformations are of different nature 

and might require different deformation spaces/metrics 
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PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia) 

Patient A 

Patient B 

? ? Template 



Parallel transport of deformations 

Encode longitudinal deformation by its initial tangent (co-) vector 

 Momentum (LDDMM) / SVF 
 

Parallel transport  

 (small) longitudinal deformation vector 

 along the large inter-subject normalization deformation 
 

Existing methods 

 Vector reorientation with Jacobian of inter-subject deformation 

 Conjugate action on deformations (Rao et al. 2006) 

 Resampling of scalar maps (Bossa et al, 2010) 

 LDDMM setting: parallel transport along geodesics via Jacobi fields 

[Younes et al. 2008] 
 

Intra and inter-subject deformations/metrics are of different nature  
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Parallel transport along arbitrary curves 

Infinitesimal parallel transport = connection 

g’X : TMTM  
 

A numerical scheme to integrate for symmetric connections:  

Schild’s Ladder [Elhers et al, 1972] 

 Build geodesic parallelogrammoid 

 Iterate along the curve  
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of 

deformations in time series of images, IPMI 2011 ] 



Parallel transport along geodesics 

Along geodesics: Pole Ladder [Lorenzi et al, JMIV 2013] 
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[Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series 

of Images: from Schild's to pole Ladder, JMIV 2013, to appear ] 
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Efficient Pole and Schild’s Ladder with SVFs 

Numerical scheme 

 Direct computation: 

 

 Using the BCH: 
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of 

deformations in time series of images, IPMI 2011 ] 

Runner-up for the IPMI Erbsmann 2011 prize 

 



Analysis of longitudinal datasets 

Multilevel framework 

55 

Single-subject, two time points 

Single-subject, multiple time points 

Multiple subjects, multiple time points 

Log-Demons (LCC criteria) 

4D registration of time series within the 

Log-Demons registration. 

Pole or Schild’s Ladder 

[Lorenzi et al, in Proc. of MICCAI 2011] 
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Longitudinal model for AD 

56 

Estimated from 1 year changes – Extrapolation to 15 years 

70 AD subjects (ADNI data) 

Observed Extrapolated Extrapolated 
year 
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Longitudinal changes in Alzheimer’s disease  

(141 subjects – ADNI data) 

Contraction Expansion 

Student’s 

 t statistic 
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Study of prodromal Alzheimer’s disease  

 
 98 healthy subjects, 5 time points (0 to 36 months). 

 41  subjects Ab42 positive (“at risk” for Alzheimer’s) 

 Q: Different morphological evolution for Ab+ vs Ab-?  
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Average SVF 

for normal 

evolution (Ab-) 

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] 



Ab42- Ab42+ 
Ab42- Ab42+ 

Time: years 
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Study of prodromal Alzheimer’s disease  

 Linear regression of the SVF over time: interpolation + prediction 
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0*))(~()( TtvExptT 

 Multivariate group-wise comparison 

of the transported SVFs shows 

statistically significant differences 

(nothing significant on log(det) ) 

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011] 



Group-wise flux analysis in Alzheimer’s 

disease: Quantification 
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From group-wise… …to subject specific 

 

Regional flux 

(all regions) 

Hippocampal  

atrophy  
[Leung 2010] 

(Different ADNI 

subset) 

AD vs 

controls 

164 [106,209]  121 [77, 206] 

MCI vs 

controls 

277 [166,555] 545 [296, 1331] 

sample size ∝ sd/(mean1-mean2) 

NIBAD’12 Challenge: 

Top-ranked on Hippocampal atrophy measures 

Effect size on left hippocampus 



A powerful framework for statistics  

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09] 

 One affine transformation per region (polyaffines transformations) 

 Cardiac motion tracking for each subject [McLeod, Miccai 2013] 

Log demons projected but with 204 parameters instead of a few millions 
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A powerful framework for statistics  

Parametric diffeomorphisms [Arsigny et al., MICCAI 06, JMIV 09] 

 One affine transformation per region (polyaffines transformations) 

 Cardiac motion tracking for each subject [McLeod, Miccai 2013] 

Log demons projected but with 204 parameters instead of a few millions 

 Group analysis using tensor reduction : reduced model  

8 temporal modes x 3 spatial modes = 24 parameters (instead of 204) 
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[Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012] 

Hierarchical Estimation of the Variability 
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[Seiler, Pennec, Reyes, Medical Image Analysis 16(7):1371-1384, 2012] 

X. Pennec – MISS, July 30 2014 69 

Hierarchical Estimation of the Variability 

47 subjects 



Which space for anatomical shapes? 

Physics 
 Homogeneous space-time structure at large 

scale (universality of physics laws)  

[Einstein, Weil, Cartan…] 

 Heterogeneous structure at finer scales: 

embedded submanifolds (filaments…) 
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The universe of anatomical shapes? 
 Affine, Riemannian of fiber bundle structure?  

 Learn locally the topology and metric  

 Very High Dimensional Low Sample size setup 

 Geometric prior might be the key! 

 

Modélisation de la structure de l'Univers. NASA 



Advertisement  

Mathematical Foundations of Computational Anatomy 

Workshop at MICCAI (last edition in Nagoya 2013) 
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• Organizers: S. Bonnabel, J. Angulo, A. Cont, F. 

Nielsen, F. Barbaresco 

•Scientific committee: F. Nielsen, M. Boyom P. 
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Proceedings of previous editions: 

http://hal.inria.fr/MFCA/ 

 
http://www-sop.inria.fr/asclepios/events/MFCA13/ 

http://www-sop.inria.fr/asclepios/events/MFCA11/ 

http://www-sop.inria.fr/asclepios/events/MFCA08/ 

http://www-sop.inria.fr/asclepios/events/MFCA06/ 

 

 

 



 Medical image processing and visualization software  

 Open-source, BSD license 

 Extensible via plugins 

 Provides high-level algorithms to end-users  

 Ergonomic and reactive user interface 

                                http://med.inria.fr  

INRIA teams involved: Asclepios, Athena, Parietal, Visages  

 Available registration algorithms : 

 Diffeomorphic Demons 

 Incompressible Log Demons 

 LCC Log Demons 
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