Demonology, or a short retrospective of Demons

in medical image registration

X. Pennec

On behalf of many people and the Epidaure / Asclepios team

Asclepios team
2004, route des Lucioles B.P. 93 06902 Sophia Antipolis Cedex
http://www-sop.inria.fr/asclepios

Talk overview

The early phase (Thirion)

A Pair and Smooth approach (Cathier)

Adaptive regularization (Stefanescu)

Diffeomorphic demons (Vercauteren)

Extensions and log-demons (Mansi, Yeo, Vercauteren)

The deformable Registration Landscape in 1995

Optical flow

- Horn and Schunck, Artif. Intell. 17, 1981;
- Aggarwal and Nandhakumar, Proc. IEEE 76: 917-935,1988;
- Barron et al., 1994.

Linear elastic deformation

- Broit, PhD 1981.
- Bajcsy and Kovacic CVGIP 46, 1989
- Gee, Reivich, Bajcsy, J. Comp. Assis.Tom. 17, 1993.

Fluid (images \& surface)

- Christensen, Rabbitt, Miller, Phys. Med. Biol. 39, 1994.
- Christensen, Rabbitt, Miller.IEEE Trans. Im. Proc. 5(10), 1996.
- Thompson and Toga, IEEE TMI 15(4), 1996.

Mechanical deformations

T is a deformation endoded by its displacement vector field:

$$
x_{i} \mapsto T\left(x_{i}\right)=x_{i}+u\left(x_{i}\right)
$$

Similarity measure is the SSD

$$
C=\sum\left(I(x)-J(x+u(x))^{2}\right.
$$

The differential of this energy is considered as a force:

$$
\begin{equation*}
F(x, u)=-(I(x)-J(x+u)) \nabla J(x+u) \tag{1}
\end{equation*}
$$

Mechanical deformations

The force F is applied to the image considered

- Either as a linear elastic material (Lamé Coef.)

$$
\begin{equation*}
\mu \nabla^{2} u+(\mu+\lambda) \nabla(\operatorname{div}(u))=F \tag{2}
\end{equation*}
$$

- Or as a viscous fluid (Navier-Stokes, Viscosity Coef.)

$$
\begin{gather*}
\mu \nabla^{2} v+(\mu+\lambda) \nabla(\operatorname{div}(v))=F \tag{3}\\
\frac{\partial u}{\partial t}=v-(\nabla u) v \tag{4}
\end{gather*}
$$

Equations (2) and (3) are iteratively solved with F computed by (1). u is computed by integrating equation (4).

Difficulties

- Differential equations are costly to solve
- Regularity of T?
- Small time steps, many iterations
- Very high computation time...

- Computer Science

A program or process that sits idly in the background until it is invoked to perform its task.

- A person who is part mortal and part god

Demigod, deity, divinity, god, immortal - any supernatural being worshipped as controlling some part of the world or some aspect of life or who is the personification of a force

- Maxell's demon

An imaginary creature who is able to sort hot molecules from cold molecules without expending energy, thus bringing about a general decrease in entropy and violating the second law of thermodynamics.

Demons' algorithm (MRCAS 95, CVPR96, Media98)

Medical Image Analysis (1998) volume 2, number 3, pp 243-260
 demons

J.-P. Thirion*

INRIA, Equipe Epidaure, 2004 Route des Lucioles BP93, 06902 Sophia-Antipolis, France

Abstract

In this paper, we present the concept of diffusing models to perform image-to-image matching. Having two images to match, the main idea is to consider the objects boundaries in one image as semi-permeable membranes and to let the other image, considered as a deformable grid model, diffuse through these interfaces, by the action of effectors situated within the membranes. We illustrate this concept by an analogy with Maxwell's demons. We show that this concept relates to more traditional ones, based on attraction, with an intermediate step being optical flow techniques. We use the concept of diffusing models to derive three different non-rigid matching algorithms, one using all the intensity levels in the static image, one using only contour points, and a last one operating on already segmented images. Finally, we present results with synthesized deformations and real medical images, with applications to heart motion tracking and three-dimensional inter-patients matching.
Keywords: deformable model, elastic matching, image sequence analysis, inter-patient registration, non-rigid matching
Received October 22, 1996; revised August 8, 1996; March 16, 1998; accepted April 13, 1998

Membrane with demons

Patient 2

Demons' algorithm (MRCAS 95, CVPR96, Media98)

- $\mathrm{T}_{0}=$ Identity
- Correction field

$$
C_{n+1}=\frac{I-J \circ T_{n}}{\|\nabla I\|^{2}+\left(I-J \circ T_{n}\right)^{2}} \nabla I
$$

- Regularization by Gaussian filtering

$$
\begin{array}{ll}
& \hat{C}_{n+1}=U_{n} \circ C_{n+1} \\
\text { 穿 } & \\
& U_{n+1}=G_{\sigma} * \hat{C}_{n+1}
\end{array}
$$

$$
\begin{aligned}
& \tilde{C}_{n+1}=G_{\sigma} * C_{n+1} \\
& U_{n+1}=U_{n} \circ \widetilde{C}_{n+1}
\end{aligned}
$$

J.P. Thirion: Image Matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis 2(3), 242-260, 1998.

Demons' algorithm (MRCAS 95, CVPR96, Media98)

Harvard Medical School

Unbiased Atlases: Guimond 1999

Figure 1: Average model construction method.

Guimond, Meunier, Thirion. Average Brain Models: A Convergence Study. CVIU 77, 1999

- Guimond 2001: VTK implementation (later used for ITK)

Intensity-based deformable registration

Demons algorithm: why does it work?

- + Fast, efficient
- - Do not minimize an energy
- Difficult to analyze
- Convergence?
- Why does that work?
- How to change the similarity measure?

Talk overview

The early phase (Thirion)

A Pair and Smooth approach (Cathier)

Adaptive regularization (Stefanescu)

Diffeomorphic demons (Vercauteren)

Extensions and log-demons (Mansi, Yeo, Vercauteren)

PASHA: Pair-And-Smooth, Hybrid energy based Algorithm

$$
E(C, T)=\frac{1}{\sigma_{i}^{2}} S S D(I, J, C)+\frac{1}{\sigma_{x}^{2}}\|C-T\|^{2}+\operatorname{Reg}(T)
$$

- SSD : measures the similarity of intensities
- Reg : regularization energy (quadratic)
- σ_{x}, σ_{i} : smoothing and noise parameters
- C : correspondences between points (vectors field)
- T : transformation (regularized vector field)
- Correspondences (matches) as an auxiliary variable

[^0]\[

$$
\begin{gathered}
\text { PASHA: Pair-And-Smooth, } \\
\text { Hybrid energy based Algorithm } \\
E(C, T)=\frac{1}{\sigma_{i}^{2}} S S D(I, J, C)+\frac{1}{\sigma_{x}^{2}}\|C-T\|^{2}+\operatorname{Reg}(T)
\end{gathered}
$$
\]

Alternated minimization

- Minimization with respect to C :
- Find matches between points by optimizing $E_{S}+$ in the neighborhood of T
- Gradient descent ($1^{\text {st }}, 2^{\text {bd }}$ order, e.g. Gauss-Newton)
- Minimization with respect to T :
- Find a smooth transformation that approximates C
- Quadratic energy \Rightarrow convolution
- Interest: fast computation

Gauss-Newton optimization of the correspondences

$$
E(C)=\int\left(I(x)-J(C(x))^{2} \cdot d x+\frac{\sigma_{i}^{2}}{\sigma_{x}^{2}} \int\|C(x)-T(x)\|^{2} \cdot d x\right.
$$

Newton optimization

- Second order Taylor expansion of E(C)
- Hessian matrix can be null or negative

Gauss-Newton

- $1^{\text {st }}$ order Taylor expansion of error

$$
[I-J \circ(T+u)(x)]=[I-J \circ T(x)]+(\nabla J \circ T)^{T} \cdot u(x)+O\left(\|u(x)\|^{2}\right)
$$

- Solve approximated SSD Criterion around $\mathrm{C}=\mathrm{T}$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{C}+\mathrm{u}) \approx S S D(T)+2 \int(J \circ T-I) \cdot(\nabla J \circ T)^{t} \cdot u \\
&+\int u^{t} \cdot(\nabla J \circ T) \cdot(\nabla J \circ T)^{t} \cdot u+2 \frac{\sigma_{i}^{2}}{\sigma_{x}^{2}} \int(C-T)^{t} \cdot u+\frac{\sigma_{i}^{2}}{\sigma_{x}^{2}}\|u\|^{2} \\
& \text { X. Pennec - MISS, July } 302014
\end{aligned}
$$

Gauss-Newton optimization of the correspondences

$$
E(C)=\int\left(I(x)-J(C(x))^{2} \cdot d x+\frac{\sigma_{i}^{2}}{\sigma_{x}^{2}} \int\|C(x)-T(x)\|^{2} \cdot d x\right.
$$

Exact solution of the quadratic approximation of the SSD

- Solve

$$
\left[(\nabla J \circ T) \cdot(\nabla J \circ T)^{t}+\frac{\sigma_{i}^{2}}{\sigma_{x}^{2}} I d\right] \cdot u=(J \circ T-I) \cdot(\nabla J \circ T)
$$

- By inversion lemma:

$$
u=\frac{(J \circ T-I) \cdot(\nabla J \circ T)}{\|\nabla J \circ T\|^{2}+\sigma_{i}^{2} / \sigma_{x}^{2}}
$$

- Local estimation of intensity variance: $\sigma_{i}^{2}=(J \circ T-I)^{2}$
- Assuming isotropic voxel size: $\sigma_{x}^{2} \approx 1$

$$
u=\frac{I-J \circ T}{\|\nabla I\|^{2}+(I-J \circ T)^{2}} \nabla I
$$

Important Practical Remark

$$
u=\frac{I-J \circ T}{\|\nabla I\|^{2}+(I-J \circ T)^{2}} \nabla I
$$

- Norm of update is bounded by construction

$$
(\|\nabla I\|-(I-J \circ T))^{2}=\|\forall \psi\|\left\|^{2} \leq+1(I Z J \circ T)^{2}-2(I-J \circ T)\right\| \nabla I \|>0
$$

- Update is diffeomorphic by tri-linear interpolation!

Efficient Regularization

Quadratic regularizer

$$
\operatorname{Reg}(T)=\int \sum_{k=1}^{\infty} \frac{\sum_{i_{1} \ldots i_{k}}\left\|\partial_{i_{1}} \ldots \partial_{i_{k}}(T-I d)\right\|^{2}}{\sigma_{d}^{2 k} \cdot k!}
$$

Euler Lagrange optimization of $\mathrm{E}(\mathrm{T})=\int\|\mathrm{C}-\mathrm{T}\|^{2}+\operatorname{Reg}(T)$

$$
C-T+\sum_{\mathrm{k}=1}^{\infty} \frac{(-1)^{k} \Delta^{k}(T-I d)}{\sigma_{d}^{2 k} \cdot k!}=0
$$

Solution: Gaussian smooting $\quad \mathrm{T}_{\mathrm{opt}}=G_{\sigma} * C$ with $\sigma=1 / \sigma_{d}$

- Pennec, Cachier, Ayache. Understanding the "'Demon's Algorithm": 3D Non-Rigid registration by Gradient Descent. MICCAI 1999.
Extension to a family of quadratic filters

$$
G_{\sigma, \kappa}(\mathbf{u})=\frac{1}{(\sigma \sqrt{2 \pi})^{3}(1+\kappa)}\left(\operatorname{Id}+\frac{\kappa}{\sigma^{2}} \mathbf{u} \mathbf{u}^{T}\right) \exp \left(\frac{\mathbf{u}^{T} \mathbf{u}}{2 \sigma^{2}}\right)
$$

- P. Cachier and N. Ayache. Isotropic energies, filters and splines for vectorial regularization. J. of Math. Imaging and Vision, 20(3):251-265, May 2004.

Mixed Elastic / Fluid Regularization

$$
\begin{aligned}
& E\left(C_{n}, T_{n}\right)=E_{S}\left(I, J, C_{n}\right)+\sigma\left\|C_{n}-T_{n}\right\|^{2} \\
& \quad+\sigma \lambda \cdot\left(T_{n}\right)+\sigma \lambda\left[\omega \cdot \operatorname{Reg}\left(T_{n}-T_{n-1}\right)+(1-\omega) \operatorname{Reg}\left(T_{n}\right)\right]
\end{aligned}
$$

- Result is still obtained by convolution:

$$
T_{n}=(1-\omega) \cdot K^{*} C_{n}+\omega \cdot\left(T_{n}+K^{*}\left(C_{n}-T_{n-1}\right)\right)
$$

- Advantages:
- Mixes fluid and elastic
- handles large displacements
P. Cachier N. A., Isotropic Energies, Filters and Splines for Vector Field Regulatization, J. of Mathematical Imaging and Vision, 20: 251-265, 2004

The Demons/PASHA Framework

Efficient energy minimization

$$
\begin{aligned}
& E(C, T, \dot{T})=E_{S}(I, J, C)+\sigma \int\|C-T\|^{2}+\lambda \operatorname{Reg}(T)+\mu \operatorname{Reg}(\dot{T}) \\
& \text { similarity } \\
& \text { Auxiliary } \\
& \text { Elastic + Fluid Regularity }
\end{aligned}
$$

Alternate Minimization

- on C, Correspondance Field (image forces) Gauss-Newton gradient descent: normalized optical flow
- on T, Deformation Field (regularization) Gaussian convolution

[^1]
Features - Intensity -Semantics

ARC BrainVar: CEA-Asclepios--Salpêtrière-Visages

Inter-subject registration

Add geometric constraints

- Correspondences C_{2} between sulci
- Registration energy becomes

$$
\begin{gathered}
E\left(C_{1}, C_{2}, T\right)=S\left(I, J, C_{1}\right)+\sigma \cdot\left\|C_{1}-T\right\|^{2} \\
+\sigma \cdot \gamma \cdot\left\|C_{2}-T\right\|^{2}+\sigma \cdot \lambda \cdot \operatorname{Reg}(T)
\end{gathered}
$$

- Algorithm in 3 steps:
- Min. w.r.t. C_{1} by gradient descent
- Min. w.r.t. C_{2} by nearest neighbor search
- Min. w.r.t. T : explicit solution (convolution + spline)
[P. Cachier et al, MICCAI 2001]

Results with 5 subjects

Intensity + Features

Intensity + Features
P. Cachier, J.-F. Mangin, X. Pennec, D. Rivière, D. Papadopoulos, J. Régis, N. A. Multisubject Non-Rigid Registration of Brain MRI using Intensity and Geometric Features. MICCAI'01, LNCS vol 2208, 734-742, 2001.

Talk overview

The early phase (Thirion)

A Pair and Smooth approach (Cathier)

Adaptive regularization (Stefanescu)

Diffeomorphic demons (Vercauteren)

Extensions and log-demons (Mansi, Yeo, Vercauteren)

Towards more functional registration algorithms (PhD Radu Stefanescu, 2002-2005)

- Adapt regularization with respect to the tissues
- Non stationary smoothing simulating elastic/fluid
\square Correspondences are fuzzy or less reliable at certain places
- Pathologies, homogeneous intensity areas
- Register only certain areas, interpolate the remaining
- Choice of interest points: selective registration
- Fast parallel resolution (1-5 min)
- High Performance Computing: PC cluster

Revisiting Regularization

$$
\begin{aligned}
& E(C, T, \dot{T})=E_{S}(I, J, C)+\sigma \int\|C-T\|^{2} \\
&+\lambda \int\|\nabla(T-I d)\|^{2}+\mu \int\|\nabla \dot{U}\|^{2}
\end{aligned}
$$

Modulate regularization as a function of

- 1- local variability (statistics on anatomy)
- 2- local information (presence of texture/edges)
R. Stefanescu, X. Pennec , N. A., Grid Powered Nonlinear Image Registration with Locally Adaptive Regularization, Medical Image Analysis, Sept 2004 (also MICCAI’03)

Inhomogeneous Regularization Implementation

$$
\begin{aligned}
& E(C, T, \dot{T})=E_{S}(I, J, C)+\sigma \int\|C-T\|^{2} \\
& +\quad+\int \lambda \cdot\|\nabla(T-I d)\|^{2}+\int \mu .\|\nabla \dot{U}\|^{2}
\end{aligned}
$$

Modulate regularization into non-stationary heat equation

- No more Gaussian smoothing
- Use $1^{\text {st }}$ order gradient descent
R. Stefanescu, X. Pennec , N. A., Grid Powered Nonlinear Image Registration with Locally Adaptive Regularization, Medical Image Analysis, Sept 2004 (also MICCAI'03)
- Coupled PDEs with Gaussian convolutions
- Cahill, Noble, Hawkes, MICCAI 2009

Non Stationary Elastic Regularization

$$
\frac{\partial T}{\partial t}=\operatorname{div}(D \nabla(T-I d))
$$

Diffusion or stiffness tensor

- Encodes a priori variability
- Image and application dependent
- Scalar or tensor (directional)

Non Stationary Elastic Regularization

$$
\frac{\partial T}{\partial t}=\operatorname{div}(D \nabla(T-I d))
$$

Diffusion or stiffness tensor
Source image

Inter-subject brain registration: $D=P($ grey $)+P($ white $)$

Non Stationary Fluid Regularization

Inspired from non-stationary image diffusion

- Weickert 1997, 2000
$\frac{\partial u_{i}}{\partial t}=(1-k) \Delta u_{i}$
- Solved using AOS scheme

Confidence in the correction field

- k ~ 1 for edges (driving forces)
- $\mathrm{k} \sim 0$ for uniform regions (interpolation)

- Used to model pathologies (e.g. tumors)

Performance issues: no closed-form solution!

Parallel implementation

\square Semi-implicit AOS scheme

- Parallelization using Thomas algorithm

Ideal linear acceleration

Inter-subject registration Affine transformation

MR T1 Images
$256 \times 256 \times 120$ voxels
Atlas to patient registration for radiotherapy planning

Correct size and position but high remaining variability in cortex and deep structures

Inter-subject registration Fluid regularization

Very good image correspondence
But anatomically meaningless deformation Jacobian [1/50;50]

Inter-subject registration

Adaptive non-stationary visco-elastic regularization

Registration in 5 min on 15 PCs

X

Anatomically more meaningful deformation Jacobian [1/5;5]

Patient with Pathology

Fuzzy segmentation of the resection

Confidence

Low confidence values in the resection region

Patient T1-MRI

Atlas and Patient with Pathology

Initialization: affine registration maximizing the correlation ratio

Atlas

Tumor resection

Patient T1-MRI
R. Stefanescu, O. Commowick, G. Malandain, P.-Y. Bondiau, N. A., and X. Pennec. Non-Rigid Atlas to Subject Registration with Pathologies for Conformal Brain Radiotherapy. MICCAI'04, 2004.

Data courtesy of Dr. Pierre-Yves Bondiau, M.D., Centre Antoine Lacassagne, Nice, France

Registration Result

Atlas

Resection is "preserved"

Patient T1-MRI

Classical (wrong) Registration

Atlas

Wrong registration

Patient T1-MRI

Talk overview

The early phase (Thirion)

A Pair and Smooth approach (Cathier)

Adaptive regularization (Stefanescu)

Diffeomorphic demons (Vercauteren)

Extensions and log-demons (Mansi, Yeo, Vercauteren)

Spatial Transformations Spaces

Most spatial transformation spaces do not form vector spaces but only a Lie group, \mathcal{G}

- Rigid-body, projective, diffeomorphisms, etc.

Natural operation: composition
口 $\phi_{1}, \phi_{2} \in G \Rightarrow \phi=\phi_{1} \circ \phi_{2} \in G$, where $\phi(x)=\phi_{1}\left(\phi_{2}(x)\right)$ for $x \in \Omega$

Even if addition exists, often no geometric meaning
ㅁ $\phi_{1}, \phi_{2} \in \mathcal{G} \Rightarrow \phi=\phi_{1}+\phi_{2} \notin G$

Many registration algorithms ignore this

Riemannian Metrics on diffeomorphisms

Space of deformations

- Transformation $\mathrm{y}=\phi(\mathrm{x})$
- Curves in transformation spaces: ϕ (x,t)
- Tangent vector $=$ speed vector field

$$
v_{t}(x)=\frac{d \phi(x, t)}{d t}
$$

Right invariant metric

- Eulerian scheme

$$
\left\|v_{t}\right\|_{\phi_{t}}=\left\|v_{t} \circ \phi_{t}^{-1}\right\|_{I d}
$$

- Sobolev Norm H_{k} or H_{∞} (RKHS) in LDDMM \rightarrow diffeomorphisms [Miller, Trouve, Younes, Holm, Dupuis, Beg... 1998 - 2009]

Geodesics determined by optimization of a time-varying vector field

- Distance

$$
d^{2}\left(\phi_{0}, \phi_{1}\right)=\arg \min \left(\int_{v_{t}}^{1}\left\|v_{0}\right\|_{t} \|_{\phi_{t}}^{2} d t\right)
$$

- Geodesics characterized by initial momentum
- Initial momentum can be parameterized finite dimensional parameters

Demons vs LDDMM

Use a smoothing metric on the tangent space

- Gaussian smoothing of update (~ fluid regularization)
- Registration = transformation trajectory in some space

But optimize a different regularizer

- LDDMM regularization = trajectory energy
- optimize the complete trajectory
- Demons regularization = "elastic" potential
- optimize the end-point (gradient descent)

Use group properties?

- Right invariant geodesics (LDDMM)
- One-parameter subgroups

The SVF framework for Diffeomorphisms

Arsigny et al., MICCAI 06

- Use one-parameter subgroups

Exponential of a smooth vector field u is a diffeomorphism
$\square \boldsymbol{u}$ is a smooth velocity field

- Exponential: solution at time 1 of ODE $\partial x(\mathrm{t}) / \partial \mathrm{t}=\boldsymbol{u}(x(\mathrm{t}))$

Computing the exponential

$$
\exp (\boldsymbol{u})=\exp (\boldsymbol{u} / N)^{N}
$$

-V. Arsigny, O. Commowick, X. Pennec, N. Ayache. A Log-Euclidean Framework for Statistics on Diffeomorphisms. In Proc. of MICCAI'06, LNCS 4190, pages 924-931, 2-4 October 2006.

Diffeomorphic demons

Use Lie group structure on diffeomorphisms to update

- Large deformations by composition with group exp map
\square Efficient scaling and squaring algorithm $\quad \phi \in \mathcal{G}$

$$
\phi(x) \leftarrow \phi(x) \circ \exp (u)
$$

Efficient Second Order Minimization (ESM)

- Error err $(x)=(1-J o \phi)$
- Use first derivatives at 2 points to build $2^{\text {nd }}$ order approx

$$
\nabla e r r=-\nabla(J \circ \phi)(\text { Gauss }- \text { Newton }) \rightarrow \nabla e r r=-\frac{1}{2}(\nabla I+\nabla(J \circ \phi))(\text { ESM })
$$

- Solve: $\quad\left(\nabla e r r . \nabla e r r^{T}+\alpha \cdot I d\right) . u=-e r r . \nabla e r r$
[Vercauteren et al Neuroimage 45 :(supp 1) S61-72, 2009]

Diffeomorphic demons

Results

- Really large deformations

\square Smoother and non-negative Jacobians
- Faster convergence
[Vercauteren et al Neuroimage 45 :(supp 1) S61-72, 2009]
(Open) source-code available at http://hdl.handle.net/1926/510

Large scale evaluation

Klein et al., Neurolmage 09

- 16 groups involved: MKT, INRIA, LONI, Imperial College, UPenn, Ulowa, FMRIB, Wellcome Trust,...
- 14 registration softwares

ㅁ 80 manually segmented brains

- Over 45,000 pairwise registrations performed
- 8 different comparison measures: Dice
- 3 independent statistical tests

ㅁ Diffeomorphic Demons : mean rank 3, very fast

Average Rank

Algorithm	mean rank	dof	run time: minutes	year
SyN	1.00	28M	77 (15.1)	2008
ART	1.00	7 M	20.1 (1.6) [Linux]	2005
IRTK	1.63	1.4 M	120.8 (29.3)	1999
SPM5 DARTEL Toolbox	1.88	6.4 M	71.8 (6.3)	2007
JRD-fluid	2.50	2 M	17.1 (1.0) [Solaris]	2007
Diffeomorphic Demons	3.00	21 M	8.7 (1.2)	2007
FNIRT	3.00	30K	29.1 (6.0)	2008
ROMEO	3.50	2 M	7.5 (0.5)	2001
ANIMAL		69 K	11.2 (0.4)	1994
SICLE		8K	33.5 (6.6)	1999
SPM5 Unified Segmentation		1 K	$\simeq 1$	2005
"SPM2-type" Normalize		1K	$\simeq 1$	1999
SPM5 Normalize		1K	$\simeq 1$	1999
AIR		168	6.7 (1.5)	1998

Talk overview

The early phase (Thirion)

A Pair and Smooth approach (Cathier)

Adaptive regularization (Stefanescu)

Diffeomorphic demons (Vercauteren)

Extensions and log-demons (Mansi, Yeo, Vercauteren)

Incompressible demons

In the myocardium, incompressiblity ensured:

1. On the velocities (Eulerian frame): mass continuity equation (Saddi et al., SPIE, 2008)

2. On the deformation (Lagrangian frame): correct remaining volume drifts

Hard constraint |Jac (\mathbf{u}) |= $\mathbf{1}$
(Rohlinf et al, TMI, 2003)

Incompressible demons

- Constraint on update field: $\operatorname{div}(\mathrm{u})=0$
- Projection onto the space of divergence-free vector fields


```
                                    \(\mathbf{u}=\Pi(\mathbf{g})=\mathbf{g}-\mathbf{g r a d}(p)\)
\(p\) solution of:
    \(\left\{\begin{array}{l}\Delta p=\operatorname{div}(\mathbf{v}) \\ p=0 \text { at the domain boundaries }\end{array}\right.\)
```


Solve a linear system

- Sparse and constant stiffness matrix
- Limited domain (only myocardium)
\rightarrow no significant overhead after preconditionning

T Mansi, JM Peyrat, M Sermesant, H Delingette, J Blanc, Y Boudjemline, and N Ayache. Physically-
Constrained Diffeomorphic Demons for the Estimation of 3D Myocardium Strain from Cine-MRI. FIMH 2009

Clinical Evaluation Patient with Repaired Tetralogy of Fallot

Patient with repaired Tetralogy of Fallot Circumferential Strain

Patient from Necker - Enfants Malades, Paris

Circumferential strain measured using ultrasound Automatic Function Imaging (GE)
-Mid Anterior $=$ Mid Anterosepial $=$ Mid Inferosepial - Mid hiferior
-Mid liferolateral $=$ Mid Anterolateral - - G obal

Circumferential strain estimated from short axis cine MRI
\Rightarrow Realistic circumferential strains in ToF $\neq 2 D$ strain in echo: Full 3D - No rater variability!

Mansi et al., MICCAI 2010; Mansi et al., FIMH 2009

4-D Demons for Cardiac Imaging

Incorporate trajectory constraints:

 From 4D to Multichannel Registration

TARGET

REFERENCE

JM Peyrat, H Delingette, M Sermesant, X Pennec, CY Xu, and N Ayache. Registration of 4D Time-Series of Cardiac Images with Multichannel Diffeomorphic Demons. MICCAI 2008,

Computing the Update Step

Vector error measure at each voxel (one for each channel):

- $\operatorname{err}_{i}(\phi)=\left(I_{i}-J_{i} O \phi\right)$
- Taylor expansion: $\operatorname{err}(\phi \circ \exp (u))=\operatorname{err}(\phi)+\operatorname{Verr}(\phi)^{t} \cdot u+O\left(\|u\|^{2}\right)$
- Beware: $\operatorname{Verr}(\phi)$ is now a matrix!

Least squares: Gauss-Newton approximation

$$
E(\phi)=\frac{1}{2} \sum_{x}\|\operatorname{err}(\phi)(x)\|^{2} \Rightarrow E(\phi \circ \exp (u)) \approx \frac{1}{2} \sum_{x} \| \operatorname{err}(\phi)(x)+\nabla \operatorname{err}(\phi)(x)^{t} .\left.u(x)\right|^{2}
$$

- Solve $\left(\sum_{x} \nabla \operatorname{err}(\phi)(x) \cdot \nabla \operatorname{err}(\phi)(x)^{t}\right) \cdot u(x)=\left(\sum_{x} \nabla \operatorname{err}(\phi)(x) \cdot \operatorname{err}(\phi)(x)\right)$
- Inversion lemma for scalar errors does not work any more: Solve a small (dim=num chanels) matrix system at each voxel x

DTI registration

Similarity metric:

- Tensor comparison (distance)

$$
C(\phi)=\int \operatorname{dist}^{2}\left(\Sigma_{1}(x),\left(\phi * \Sigma_{2}\right)(x)\right)
$$

- Euclidean, Log-Euclidean....

Deforming tensor images: Tensor re-orientation

- Affine action $\phi^{*} \Sigma=D \phi . \Sigma \circ \phi . D \phi^{t}$ does not preserve eigenvalues [Alexander TMI 20(11) 2001]
- Rotate eigenvectors only: $\phi^{*} \Sigma=R(D \phi) . \Sigma \circ \phi \cdot P(D \phi)^{t}$
- Finite-Strain (FS): Closest rotation $R(\phi)=\left(D \phi . D \phi^{t}\right)^{-1 / 2} D \phi$ [Zhang et al. MedIA 10(5) 2006 \& TMI 26(11) 2007] (locally affine)
- Preservation of Principal Directions (PPD)
[Alexander and Gee CVIU 77(2), 2000, Cao et al MMBIA 2006]

DT-REFinD: Diffusion Tensor Registration with Exact FiniteStrain Differential

[Yeo, et al. DTI Registration with Exact Finite-Strain Differential. ISBI'08, TMI 2009]

Tensor interpolation/metric

- Euclidean and Log-Euclidean (Arsigny '06)

Tensor reorientation

- Finite Strain: $R(\phi)=\left(D \phi . D \phi^{t}\right)^{-1 / 2} D \phi$

Exact differential

- How a change in $D \phi$ affect R ?
- Solution from Pose estimation [Dorst PAMI 27(2) 2005]

$$
d R=-R\left[R^{T}\left(\operatorname{tr}\left(\left(D \phi \cdot D \phi^{T}\right)^{1 / 2}\right) I-\left(D \phi \cdot D \phi^{T}\right)^{1 / 2}\right)^{-l} \sum\left(R^{T}\right)_{i} \otimes\left(d(D \phi)^{T}\right)_{i}\right]^{\oplus}
$$

- System to solve for Gauss-Newton is now large because of $(D \phi) *$ Accurate and still fast
- 15 minutes, $128 \times 128 \times 60$, Xeon 3.2GHz
- Better tensor alignment

DT-REFinD: Diffusion Tensor Registration with Exact Finite-Strain Differential

Moving Image M

Target Image F Approx. Grad (dR=0) Exact Gradient

15 minutes, $128 \times 128 \times 60$, Xeon 3.2 GHz
T Yeo, T Vercauteren, P Fillard, JM Peyrat, X Pennec, P Golland, N Ayache, and O Clatz, DT-REFinD: Diffusion Tensor Registration with Exact Finite-Strain Differential. IEEE Transactions on Medical Imaging, 2009.

Symmetric Log-Demons

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, DARTEL]

- Parameterize the deformation by its logarithm
- Time varying (LDDMM) replaced by stationary vector fields
- Efficient scaling and squaring methods to integrate autonomous ODEs

Parameterize deformation by its Log:

\square Replace $s \leftarrow s \circ \exp (\boldsymbol{u})$ by $_{1} \exp (\boldsymbol{v}) \leftarrow \exp (\boldsymbol{v}) \circ \exp (\boldsymbol{u})$

Approximation with BCH formula [Bossa 2007]

口 $\exp (\boldsymbol{v}) \circ \exp (\varepsilon \boldsymbol{u})=\exp (\boldsymbol{v}+\varepsilon \boldsymbol{u}+[\boldsymbol{v}, \varepsilon \boldsymbol{u}] / 2+[\boldsymbol{v},[\boldsymbol{v}, \varepsilon \boldsymbol{u}]] / 12+\ldots)$

- Lie bracket $\quad[\boldsymbol{v}, \boldsymbol{u}](\mathrm{p})=\operatorname{Jac}(\boldsymbol{v})(\mathrm{p}) . \boldsymbol{u}(\mathrm{p})-\operatorname{Jac}(\boldsymbol{u})(\mathrm{p}) . \boldsymbol{v}(\mathrm{p})$

T Vercauteren, X Pennec, A Perchant, and N Ayache. Symmetric Log-Domain Diffeomorphic
Registration: A Demons-based Approach, MICCAI 2008

Symmetric Log-Demons

Use easy inverse: $s^{-1}=\exp (-v)$

Iteration

- Given images I_{0}, I_{1} and current transformation $s=\exp (\boldsymbol{v})$
- Forward demons forces $\boldsymbol{u}^{\text {forw }}$
- Backward demons forces $\boldsymbol{u}^{\text {back }}$

- Update
- $\boldsymbol{v} \leftarrow 1 / 2\left(\mathrm{BCH}\left(\boldsymbol{v}, \boldsymbol{u}^{\text {forw }}\right)-\mathrm{BCH}\left(-\boldsymbol{v}, \boldsymbol{u}^{\text {back }}\right)\right)$

- Regularize (Gaussian)
- $\boldsymbol{v} \leftarrow \mathrm{K}_{\mathrm{diff}} * \boldsymbol{v} \boldsymbol{c}$

T Vercauteren, X Pennec, A Perchant, and N Ayache. Symmetric Log-Domain Diffeomorphic Registration: A Demons-based Approach, MICCAI 2008

Symmetric LCC log-demons

Revised Symmetric LCC-Demons (based on [Cachier 2004])

$$
\begin{gathered}
E\left(\mathbf{v}, \mathbf{v}_{\mathbf{x}}, I, J\right)=\begin{array}{|c|}
\frac{1}{\sigma_{i}^{2}} \rho^{2}\left(I, J, \mathbf{v}_{\mathbf{x}}\right) \\
\text { Similarity term }(\mathrm{LCC}) \\
\sigma_{x}^{2}
\end{array}\left\|\log \left(\exp (-\mathbf{v}) \circ \exp \left(\mathbf{v}_{\mathbf{x}}\right)\right)\right\|_{L_{\mathbf{2}}}^{2}+\frac{1}{\sigma_{T}^{2}} \operatorname{Reg}(\mathbf{v}) \\
\rho\left(I, J, \mathbf{v}_{\mathbf{x}}\right)=\frac{\mathbf{G}_{\sigma} *\left(I \circ \exp \left(-\frac{\mathbf{v}_{\mathbf{x}}}{2}\right) \cdot J_{\left.\circ \exp \left(\frac{\mathbf{v}_{\mathbf{x}}}{2}\right)\right)}^{\sqrt{\mathbf{G}_{\sigma} *\left(I \circ \exp \left(-\frac{\mathbf{v}_{\mathbf{x}}}{2}\right)\right)^{2} \cdot \mathbf{G}_{\sigma} *\left(J_{\circ \exp }\left(\frac{\mathbf{v}_{\mathbf{x}}}{2}\right)\right)^{2}}} \quad \begin{array}{l}
\text { Symmetric } \\
\text { similarity }
\end{array}\right.}{}
\end{gathered}
$$

Closed form Demons-like update (computational efficiency preserved)

$$
\delta v=-\frac{2 \Lambda}{\|\Lambda\|^{2}+\frac{4}{\rho^{2}} \frac{\sigma_{i}^{2}}{\sigma_{x}^{2}}}
$$

Robustness to the intensity bias

baseline
synthetic follow-up (ventricles expansion)

Bias: multiplicative
additive

Non-rigid registration LCC-Demons vs standard log-Demons log-Jacobian determinant of the estimated deformation

No bias
additive
multiplicative
add+mult

Inter-subject registration (Klein study)

Target overlap on 131 manually labeled brain regions for 144 registrations tests (CUMC12 public dataset)

Significantly higher TO, Significantly lower TO, White boxes: no differences

Intra-subject registration

\% whole brain 1 year changes in Alzheimer's disease (AD) (141 AD patients, 200 healthy controls)

Group	\% change	
	LCC-Demons	KNBSI
Ctrls	$1.09(1.02)$	$1.069(0.925)$
AD	$1.81(1.06)$	$1.714(0.989)$
Sample size $(95 \% \mathrm{CI})$	$544(315,1255)$	$590(332,1328)$
Statistically powered measures of longitudinal brain atrophy		

A zoo of demons registration algorithms

Demons

- Diffeomorphic demons (Vercauteren) http://www.insight-journal.org/browse/publication/154
- Spherical demons for inflated brain surfaces (Yeo / Vercauteren)
- Multichannel demons for 4D registration of cardiac sequences (Peyrat)

Log Demons

- Open-source ITK implementation (Vercauteren MICCAI 2008)
http://hdl.handle.net/10380/3060 [MICCAI Young Scientist Impact award 2013]
- Matlab version (Hervé Lombaert)
http://www.mathworks.com/matlabcentral/fileexchange/39194-diffeomorphic-log-demons-image-registration
- LCC time-consistent log-demons for AD is publicly available http://team.inria.fr/asclepios/software/lcclogdemons/
- Tensor (DTI) demons (Yeo) and log-demons (Sweet WBIR 2010): http://gforge.inria.fr/projects/ttk
- 3D myocardium strain / incompressible deformations using Helmoltz decomposition (Mansi MICCAI'10) http://med.inria.fr
- Hierarchical multiscale polyaffine log-demons (Seiler, Media 2012) [MICCAI 2011 best paper award] http://web.stanford.edu/~cseiler/software.html

medĆnzía

- Medical image processing and visualization software
- Open-source, BSD license
- Extensible via plugins
- Provides high-level algorithms to end-users
- Ergonomic and reactive user interface

Available registration algorithms :

- Diffeomorphic Demons
- Incompressible Log Demons
- LCC Log Demons in next release (April 2014)

[^0]: P. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding (CVIU), Special Issue on Non Rigid Registration, 89 (2-3), 272-298, 2003.

[^1]: -P. Cachier E. Bardinet, E. Dormont, X. Pennec and N. A.: Iconic Feature Based Nonrigid Registration: the PASHA Algorithm, Comp. Vision and Image Understanding (CVIU), 89 (2-3), 272-298, 2003.

