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Human Vision

The sensor (iris - diaphragm in a
camera, the cornea and the
lens are both lens-like objects,
the retina is where the image
is recorded - CCD sensor)

The processor (information is
transferred through the optic
nerve to the striate cortex brain
part where massive processing is
performed towards complete real-
time visual scene understanding —
almost 50% of the human brain)

Categorical judgments,
decision making

Simple visual forms,
edges, comers



Artificial Vision

The input (static, video, depth,
monochromatic, color high
dynamic range, etc sensors)

The processor (powerful
computers exploring input, prior
knowledge and models)

The process (expressing task-
specific visual understanding tasks
as mathematical inference
problems and solve them
approximately through computer
simulations)



http://www.openitmag.com/2011/06/pros-and-cons-of-laptop-and-desktop-computers/
http://createdigitalmotion.com/2010/11/kinect-hacking-and-art-round-table-why-it-matters-what-you-need-to-know/
http://louisvandeskelde.biz/les-cameras-de-video-surveillance-qui-parlent-debarquent-bientot-a-charleroi/
http://www.medicalexpo.fr/prod/toshiba-medical-systems/scanners-x-multi-coupes-pour-tomographie-corps-entier-70354-428521.html

Why artificial vision is so complex?

The input
= Large variety of sensors
" Images/signals of varying quality

The processor

= Even the most powerful individual
processor does not match up with This is what you see

a tlny port|0n Of the human braln 3.1418926835897932384626433832795802884197169399375108

processing ca paCItI es 8209749445923078164062862089986280348253421170679821
48086513282306647093844609880582231725359408128481117
48028410270193852110855964462294895493038196442881097
86659334461284756482337867831652712019091456485669234

. . 60348610454326648213393607260249141273724887006606315
The mathematical inference 58817488152092096282925409171536436789259036001133083
W di Vi bl 08488204665213841469519415116094330872703657595919530

n 92186117381932611793108118548074462379962749567351885

e. d r.e en |_ng u p. solving problems 75272489122793818301194912983367336244065664308602139

being ill-defined, ill-posed, non 49463952247371907021798609437027708392171762931767523

. . . 84674818467669405132000868127145263560827785771342757

convex, Invo lvin g non -linear 78960917363717872146844090122495343014654958537105079

C . . 22796892589235420199561121290219608640344181598136397
objective functions with numerous 74771309960518707211349999998372978049951059751732816
local minima 0963185950244594853469083026425225082535446850352619
$1188171010003137838752886587535208581420617177669147
30359825349042875546875115956286388235378759575819577
818577808521712268066130019278766111959092164201989....

This is what your computer sees


http://sharonyoungphotography.com/paris-france/

Artificial Vision



Artificial Vision Paradigm

Optimization ) . Model/Data
Procedure Association




Computer Vision Paradigm

o Mathematical P

Medical image
Modalities

Clinical Problem

Model-to-Data
Association

Optimization

Left Ventricle Segmentation (risk of heart attack)

=  Model-to-data-association

min [ FOR)|)dp

»=  Optimization (z1,2n) JOR

L 2] _
it =gt + _\f(—/ FOR(p)))dp
i i Oy Jom

= Parameters r= (1, -, 2,)

* Mathematical Model OR =m(x1, -, 2y)



Main Challenges

Cu rse Of D|menS|Ona||ty . find a compromise between the

expression power of the model and its complexity [finding the right model]

Cu rse Of N @) n‘l | Nea r|ty° the association of the model parameters and

the observations are highly non-linear [finding the right relation between measurements and
parameters to be estimated]

Cu rse Of N O n'CO nveXity: the designed objective function leaves in a

high-dimensional non-convex space [finding the right objective function and be able to solve
it]

CU rse Of NOﬂ-lVlOdu|arIty any solution is hardly portable to another

application setting or another problem [do not repeat the process from scratch when moving
from one visual task to another]



Discrete Artificial Vision

* Given: - .\
— Parameters X’ from a graph / \ / P
G = (Xv 8) W— -
— A neighborhood System £ ~N '\

. objects )C' edges
— Discrete label set £ J ges &£

* Assign labels (to objects) that minimize the energy:

Ming, ZpGX Op(zp) + Opg(Tp, 74)
' ] |

unary potential pairwise potential

 MRF optimization ubiquitous in vision (and beyond)



MRF hardness

MRF hardness

local optimum

global optimum
approximation

exact global
optimum

MRF pairwise potential

linear metric arbitrary

Move left in the horizontal axis,

and remain low in the vertical axis
(i.e., still be able to provide approximately optimal solutions)

But we want to be able to do that efficiently, i.e. Fast — accurately, i.e. Global minimum



MRFs and Optimization

— Deterministic Methods:
Iterated Conditional Modes/Highest Confidence First

— Non-Deterministic Methods:
Mean-field and Simulating Annealing, etc

— Graph-cut based techniques such as g-expansion:
Min cut/max flow, etc

— Message-passing techniques:
Belief Propagation Networks generalized by TRW methods

The above statement is more or less true for almost all state-of-the-art
MRF techniques



Optimization of high-order models

——————
-~ “v—--
=
R

° Hypergraph g:(.)(,C) parameters, . 4 .

-y
‘\

X 1 'I ‘| ‘\

— Parameters & \ , | @

— Hyperedges/cliques & @
hyperedges —7 T

* High-order energy minimization problem
Mming,, Zpé?(’ O,(xy,) +Oc(p, - ,24)
\_'_’ L ' ]

unary potential high-order potential
(one per node) (one per clique)




MRF optimization

via dual-decomposition




Decomposition

e Very successful and widely used technique in
optimization.

* The underlying idea behind this technique is surprisingly
simple (and yet extremely powerful):

0 decompose your difficult optimization problem into easier
subproblems (these are called the slaves)

0 extract a solution by cleverly combining the solutions from these
subproblems (this is done by a so called master program)



Dual decomposition

* The role of the master is simply to coordinate the slaves
via messages

- coordinating

- decomposition /// \\ - Messages

= Depending on whether the primal or a Lagrangian dual
problem is decomposed, we talk about primal or dual
decomposition respectively




An illustrating toy example (1/4)

For instance, consider the following optimization problem (where x
denotes a vector):

min, Y. f(x)

s.t. xz €C

We assume minimizing each f73(~)separately is easy, but minimizing
their sum)_. f*(-)is hard.

To apply dual decomposition, we will use multiple copies x' of the
original variables x

Via these auxiliary variables{x’}, we will thus transform our problem

into: o
min{mi},x Zz fz(afz).
s.t. xteC,|x' =

£




An illustrating toy example (2/4)

 If coupling constraints x' = x were absent, problem would |
decouple. We thus relax them (via Lagrange multipliers {\" }) and
form the following Lagrangian dual function:

g({N'}) = mingzicey o >, [H(@*) + D, N - (2" —x)

>

Last equality assumes  {A" FCA={{N\}| > . N =0}
because otherwise it holds g({N'}) = —0

s The resulting dual problem (i.e., the maximization of the
Lagrangian) is now decoupled! Hence, the decomposition
principle can be applied to it!



An illustrating toy example (3/4)
The i-th slave problem obviously reduces to:
g'(A") = mingice f*(z*) + X' - 2’

Easily solved by assumption. Responsible for updating only X' |
set equal to Z'(A*) = minimizer of i-th slave problem for given \*

The master problem thus reduces to:
maxgyiyen 9{AN'}) =22 9" (\)

This is the Lagrangian dual problem, responsible to update {)\Z}
Always convex, hence solvable by projected subgradient method:

V = subgradient w.r.t. \*

AY < [/\ +a:Vg' (A )}A -], = projection on feasible set A

In this case, it is easy to check that: Vgi ()\&) — @i(/\i)



An illustrating toy example (4/4)
The master-slaves communication then proceeds as follows:

1. Master sends current{/\i}to the slaves

2. Slaves respond to the master by solving their easy problems and
sending back to him the resulting minimizers Z*(\*)

3. Master updates each \* by setting \* «— [/\i + atfi()\i)] A

(Steps 1, 2, 3 are repeated until convergence)



Optimizing MRFs via dual decomposition

We can apply a similar idea to the problem of MRF optimization, which
can be cast as a linear integer program:

—_

mm E 929 .Cl?p 9 xp—|— Z qu a, b);z:pq(a, b)

Pa,beL
s.l. Xc .4:” _
s.t. Z aﬁp( ) =1, < (only one label assigned per vertex)
acLl
Z Lqu((l, b) — CUp(b), enforce consistency between )
6={{0 £ {0pq}} is the vector o Frpanamesters) consjshiag of all
unary Wp=at0p (d, &) d=pairwisg) , Vs — a@(rab)ks\oec@bl)zed po‘ren’nals

bel

X = {thﬁgz(}fz{x@}{(ﬂs 1}}@ vefﬁm{&f b%&y{MRF}vamables consns’rmg of
unary sub

Binary L x,(a) =1

vesis&esint

& label a is assigned to node p

epftrcd) ednsisterebaletwbareassBred to o {x, H  {x,,}




Algorithmic properties

[TTTTTTTTT]
i

= = T T

non-submodular submodular loopy MRF submodular MRF
edge edge (with small

tree width)



Algorithmic properties

Faster convergence
E

More powerful



Blind Image Deconvolution




Blurred image generation process




Blurred image generation process




Blurred image generation process




Blurred image generation process

blur kernel = camera motion



Blind Image deconvolution

latent sharp blur kernel

image\ /

Il =x®k+n
/

observed blurred noise
image

Goal: given just | compute both X and K




High-level idea: how to reduce ill-posedness?

X = quantized version of image X with just 15 colors
(piecewise constant)

Yet both X and X produce almost same blurry image

IDEA: compute X, which has much simpler structure



MRF-based Blind Image deconvolution




MRF-based Blind Image deconvolution




MRF-based Blind Image deconvolution




MRF-based Blind Image deconvolution




MRF-based Blind Image deconvolution




MRF-based Blind Image deconvolution




MRF-based Blind Image deconvolution




MRF-based Blind Image deconvolution




The Image Completion Problem

 Based only on the observed part of an incomplete image, fill its
missing part in a visually plausible way

= We want to be able to handle:
0 complex natural images
0o with (possibly) large missing regions
0 in an automatic way (i.e. without user intervention)

= Many applications: photo editing, film post-production, object
removal, text removal, image repairing etc.

38



The Image Completion Problem

e We would also like our method to be able to handle the
related problem of texture synthesis

* |n texture synthesis, we are given as input a small texture and
we want to generate a larger texture of arbitrary size
(specified by the user)

39



Exemplar-based approaches

* Key idea: fill missing region by copying exemplars i.e. pixels
(or patches) from the observed image part

= Disadvantages:

0 Successful if missing region consists of only one texture e.g.
texture synthesis

0 Greedy approach: image is filled one patch at a time



Image Completion as a Discrete Global
Optimization Problem

T

node

edge

};:;rr Py
e

w qgap,

-----------------

* Labels L = all wxh patches from source region S
* MRF nodes = all lattice points whose neighborhood intersects

target region T

* potential©,(z,) = how well source patch x agrees with source

region around p

e potential ©,,(z,,x,) =how well source patches X,, X, agree on

their overlapping region
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Pose Invariant Segmentation of the Heart

[ | C h a I | e n ge S Normal Heart  Dilated Ca‘rdiomyopathy

' we @ s -

vy
- Human variability P\
- Complex background
- Low contrast

- Noise

= Goal

- Automatic
- Robust

- Pose-invariant !

et | @ [T ] Wt 134 01207

Fig. Manual segmentation on 3D CT images

B. XIANG et al, 3D Cardiac Segmentation with Pose-invariant Higher-order MRFs, ISBI 2012 Page 47



Shape representation

= Point distribution model = Third-order cliques
X ={X, X} T ={(%,X;, %)}
Y X ScT

Point distribution model Triangulated mesh



Statistical shape prior

* |ocal constraints

P(i,j,k) (a, )

= Global shape

1

P(X)=—-TTP.(a, )




Statistical shape prior

* |ocal constraints

P(i,j,k)(auB)
= Global shape
1
P(X)=—-11P
(X) 7 ceC *

Pose-invariant (i.e. translation, rotation, scale) !



Qualitative Results

Accurate boundaries with low contrast images

Fig. Segmentation results of 3D CT volumes




Linear Registration Using High

Order Graphs



Unary Potentials

= Comparison of a patch from the source
to a patch from the target image

" Metric-invariant




High Order Cliques

O li .
3 aligned points = 1 T-clique

along each axis




High Order potentials
" Linear transformation :
— Preserves barycenters /

= Condition (P) : 0
L+ 1, — 2%, =0.

= Easy to compute, only depends on the
label



High Order potentials in T-clique
= Check condition (P) for (s,t,u) ¢ o 0

= Similarity registration :

—Images of (s,v,u) form a right
isosceles triangle

= Rigid registration :

—Images of (s,v,u) form a right
isosceles triangle, with the
same size as (s,v,u) triangle



Some results

(a) Before Sandy (b) After Sandy (c) After affine registration



HIGHER-ORDER NON-RIGID 3D SURFACE
MATCHING



ngh order Graph I\/Iatahmg
SRSt

. Boolean Indicator Variable: O

_ {1 if a is an active correspondence
@ 10 otherwise

O O
O O

Graph 1 Graph 2



High-order Graph I\/Ia)g.hing

& \

. Singleton matching cost @, O

O O

Graph 1 Graph 2



High-order Graph I\/Ia)g.hing

—
—=
[
__
—_—
-
—
-

@
O O
Pairwise matching cost 0,
@ ---1--------- >Q
O O
® O

Graph 1 Graph 2



High-order Graph I\/Ia)ghmg
o i

o O
Third-order matching cost 0,
PR >@
O O
C
@S >@

Graph 1 Graph 2



Experimental Results




Experimental Results




Discrete Artificial Vision

* Given: - .\
— Parameters X’ from a graph / \ / P
G = (Xv 8) W— -
— A neighborhood System £ ~N '\

. objects )C' edges
— Discrete label set £ J ges &£

* Assign labels (to objects) that minimize the energy:

Ming, ZpGX Op(zp) + Opg(Tp, 74)
' ] |

unary potential pairwise potential

 MRF optimization ubiquitous in vision (and beyond)



Optimization of high-order models

——————
-~ “v—--
=
R

° Hypergraph g:(.)(,C) parameters, . 4 .

-y
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— Parameters & \ , | @

— Hyperedges/cliques & @
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* High-order energy minimization problem
Mming,, Zpé?(’ O,(xy,) +Oc(p, - ,24)
\_'_’ L ' ]

unary potential high-order potential
(one per node) (one per clique)




Conclusions

e Discrete Graphical Models, is a promising answer to artificial
vision

— Curse of Dimensionality : Prior Knowledge either through anatomy
of machine learning techniques towards dimensionality reduction

— Curse of Non-linearity: Model Decomposition / Data association
allows direct support estimation of parameter selection from the
images

— Curse of Non-Convexity: Regularization terms / dropping out of
constraints can improve the optimality properties of the obtained
solution

— Curse of Non-Modularity: Model/Data Association/Inference
Decomposition and use of gradient free methods



Future

 The future belongs to:

— Higher order structured models (Grammars)

— Message Passing Methods running on parallel
architectures

— Grammars [focus was up to now on inference and not on
the design of the objective function]

e Learning their parameters
* Learning their derivation sequences
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Discrete Image Registration

Nikos Paragios

Benjamin Glocker, Aristeidis Sotiras, Nikos
Komodakis, Yangming Ou, Christos Davatzikos,
Nassir Navab



http://www.cbica.upenn.edu/sbia/personnel.html

6.

Outline

Context

Image Registration

Hybrid Registration
Symmetric Hybrid Registration
Group-wise Registration

Conclusion

7/29/2014
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Context

7/29/2014
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Image Registration: Definition

» Establish correspondences
between images.

» Estimate transformation so
that the images are aligned.

Synonyms:

Image alignment; Image fusion; Image matching; Motion estimation;
Optical flow; Image correspondence problem

7/29/2014

72



Challenges

Important time constraints

Important volume of data

Increasing data dimensionality

Vast range of applications

7/29/2014

Efficiency

— Versatility

73



Image Registration

7/29/2014
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Image Registration

Energy minimization:

07+

= argminl® M (ICI) (T), ®(5)7(0) )+ R(7(0))

T: fixed image or target
S: moving image or source

T: transfor

mation parameterized by e

Deformation Model

Registration

Similarity Criterion

7/29/2014

Optimization Strategy

75



Image Registration: Deformation Model

Physical models

* Elastic [Bajscy 89, Davatzikos 97]

* Viscous fluid [Christensen 96]

* Diffusion [Thirion 98, Pennec 99,
Vercauteren 07]

* Diffeomorphisms [Joshi 00, Beg 05]

- Computational intensive

Interpolation theory

* Radial Basis Functions [Bookstein 91, Rohr
01, Rohde 03]

* Piecewise Affine [Pitiot 06, Arsigny 05]

* Free Form Deformations [Rueckert 99,
Rueckert 06]

-> Fewer degrees of freedom

Constraints

* Topology preservation [Droske 03, Noblet
05, Haber 06, Sdika 08]

* Volume preservation [Rohlfing 03, Haber
04, Mansi 11]

* Rigidity constraints [Loeckx 04, Staring 07,
Modersitzki 07]

- Task specific

7/29/2014

Our strategy

* Cubic B-Splines Free Form Deformations
- Efficient
- Implicit regularization
- Topology preservation through hard
constraints
- Coarse-to-fine scheme to capture
complex deformations

76




Image Registration: Similarity Criterion

Iconic

Geometric

* Mono-m
- Int
CC

- Fec

[O

*  Multi-m
- Infq
[W|

[St

[PI

[He

[RU

- Re<|

— Exploit both intensity and geometric info

Our strategy

Hybrid

- Get the best of both worlds

s: Procrustes
BFs [Rohr 01],
r [Guo 06]
pces: Affine
pikkila 04],
Ines 04, Tsin
ce functions

pjczyk 05]
.eordeanu 05,
Wang 10]

Simulate one modality [Wein 08,
Michel 10], Map to a common space
[Maintz 01, Haber 07, Michel 11]

- Dense solution, computational intensive
- Initial conditions, treat all points equally

«  Spatial transformation + correspondence
- ICP [Besl 92], EM-ICP [Granger 02],

TPS-RPM [Chui 03]

-> Sparse, limited accuracy

- Efficient, robust to large deformations

7/29/2014
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HIIdsgc I\NCTHlotiativiil. UpLliniiieauivii

Strategy

Continuous

Discrete

* GD [Ruekkert 99, Droske 03]

* Conjugate gradient [Miller 01, Joshi 07]
* GN [Ver¢auteren 09]

LM [Theyenaz 00, Kybic 03]

» Stochastjic GD [Klein 07, Balci 07]

-> Differentiable functions, local search

* Graph-based [Tang 07, Liao 11]

* Message passing [Murphy 99, Felzenszwalb
06]

e Linear-programming approadhes [Glocker
08, Kwon 08, Zikic 10]

- Non-differentiable functions] global search

Miscellaneous

* Heuristi¢s and Meta-heuristics [Shen 02,
Xue 04, Liu 04]

Our strategy

e Discrete: MRF formulation

* Evolutionary methods [Klein 07,
Santamaria 11]

- No optimality guarantees
- General

7/29/2014
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HIIdsgc I\NCTHlotiativiil. UpLliniiieauivii

Strategy

Continuous Discrete
GD [Rue 1]
Conjugaf Our Strategy , Felzenszwalb
GN [Verq
, ;'t\gc[;::t * Discrete: Belief Propagation [Alchatzidis 11] [ [Slocker
- Generality
-> Differen| _ Optlmallty global search
- Per-instance approximation factors
Miscellan
- Speed

e Heuristics and Meta-heuristics [Shen 02,
Xue 04, Liu 04]

e Evolutionary methods [Klein 07,
Santamaria 11]

- No optimality guarantees
- General

7/29/2014 79



Hybrid registration

7/29/2014
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Basic Idea of Intensity-based Registration

Image registration as an optimization problem

o0
T :argm%ngb([,JoT) O

Target and source Image:

o LJ:QCR R Lo
ransrormation: 'e)
- O

Image metric: T(X) =X + D(X)

[
b:(I,J) R S QO



Dimensionality Reduction

Linear combination of control points

D) = Y nx) s
ol L

n : basis functions d : displacements

~

e.g. Free-Form Deformations (Sederberg et al. 1986; Rueckert et al. 1999)




(Weighted) Block Matching

e Redefinition of data term w.r.t. control lattice

Eaa(D) = 3 [ () (1) = J(x + D(x)))" dx
| (x)

o
Jon(y)dy

with  7(x)

e Pixel-wise image metrics weighted by normalized basis functions

* image points closer to a control point gain more influence on its matching
energy

e Statistical image metrics (e.g. mutual information, cross correlation)
e evaluation of image metric in local patches centered at the control points
* block size depends on control lattice resolution



Discrete Labeling Problem

 Markov Random Field formulation with pairwise interactions

Emrf(l) — Z Vp(lp) + Z qu(lpv Zq)
)EN

peG q Edges
* Unary potentials (matching):
Nodes

Villy) = [ () (160) = Jx +d)) dx

7

. . \_
* Pairwi ~
or any other local image metric

V;?q(lpa lq) = A ”dlp - dlq“



Deformable Registration by Discrete Optimization

Low-dimensional deformation model (B-Spline FFD)

Update computation:

1. For each control point CP,

lp
For a discrete number of displacements d
evaluate approximative change in similarity measure

Villy) = [ () (Fr(a) = s+ d))° da

~
or any other local image metric

2. Compute approximately optimal combination of the
pre-computed displacements w.r.t. chosen regularization
with fast and accurate discrete optimization techniques

Emrf(l) — Z Vp(lp) + Z qu(lpvlq)

peG (p.gq

[Glocker 2008]



Deformable Registration by
Discrete Optimization

Properties:

— No derivative computation required

— Similar efficiency for any difference

measure

— Larger/non-local search range for
each CP

—> increased capture range



Related Work

Initialization

* Surface-iconic [Liu 04, Postelnicu 09,
Gibson 09]

* Landmark-iconic [Johnson 02, Auzias 11]

 Segmented structure-iconic [Camara 07]

-> Independent solutions
-> robustness, no coupling guarantee

Constraint

e Soft sparse constraints [Hartkens 02, Hellier
03, Papademetris 04, Rohr 04, Avants 06]

* Soft dense constraints [Worz 07, Biesdorf
09, Azar 06]

* Hard constraint [Joshi 07]

-> One-way flow of information

Coupled

* Landmark-iconic [Cachier 01]
* Surface-iconic [Joshi 09]

- One objective function
- Mono-modal

-> Constraints on landmarks
- Spherical geometries

7/29/2014

Our strategy

* Coupled approach
- Discrete framework
- One-shot optimization
- Any similarity criterion
- Diffeomorphic
- No constraints on landmark

87




Hybrid Registration

Input

* Two images
- Source S
- TargetT

* Two sets of landmarks
- Landmarks in source K= {x!1,..,,
iln l

Output
 Landmark correspondences 74 geo

« Dense deformation field 7lico
- Parametrized by Cubic B-spline FFDs

» Solutions are obtained simultaneously and
are consistent

A,

7/29/2014
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i —

—=
[
—
-
_—_
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. Boolean Indicator Variable: O

_ {1 if a is an active correspondence
@ 10 otherwise

O O
O O

Graph 1 Graph 2



Graphal\/latchingQ

—

@ - \_4 ______

O Singleton matching cost 8, O

o O

Graph 1 Graph 2



Graph 1

Graphal\/latchingQ
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Graph 2



Geometric Part — Graph

Elgeo=)p € Vigeo Tiilllgeo (llp )+ ) pg € ¢

o Landmark

correspondence

Pair-wise interaction -
geometric constraint

7/29/2014 92
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Geometric Part — Data Term

Ulgeo (Up)=o(xlp 4

Landmark
correspondence

Potential
correspondence

93




Geometric Part — Regularization Term

Plgeo (Up,llg)=[|(Allp —Alllg )—(Klp

o Landmark
correspondence

Pair-wise interaction -
geometric constraint

Potential
correspondence

7/29/2014 94



lconic Part — Graph

"

7/29/2014

Deformation grid
node displacement

Pair-wise interaction -
smoothness constraint

95




lconic Part [Glocker 08]

Deformation grid — Cubic B-spline FFD:

7/29/2014
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lconic Part — Data Term

Ulico (Up)=

Ip (X)p(SeTlicollp (x),T(

Deformation grid
node displacement

7/29/2014 97



lconic Part — Regularization Term

Plico (Up,Ug)=[l(dp+lp)—(dig+
Elastic regularization:

Deformation grid
node displacement

Pair-wise interaction -
smoothness constraint

R
>,
A_...........a>!“'/’
N

Potential displacement

Initial displacement

A
| Total displacement

7/29/2014 98



Hybrid Part - Graph

Landmark
correspondence

Deformation grid
® node displacement

Pair-wise interaction -
coupling constraint

7/29/2014 99



Hybrid Part — Coupling Constraint

Plhyb (Up ,llg )=wlqg (kip)||(Alp —Krlp )—(c

o Landmark
correspondence

Deformation grid
node displacement

7/29/2014

A
l
[

Potential
correspondence

Pair-wise interaction -
coupling constraint

Potential displacement

Initial displacement

Total displacement
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Hybrid Registration - Graph

o Landmark
correspondence

Deformation grid
® node displacement

Pair-wise interaction -
geometric constraint

Pair-wise interaction -
smoothness constraint

Pair-wise interaction -
coupling constraint
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Results

Visual results before (left column) and after registration using the proposed
iconic (middle column) and hybrid approach (right column). The results are

given in the form of a checkerboard where neighbouring tiles come from
different images.
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Results

Iconic (h = 60mm) Hybrid (h = 60mm) Iconic (h =20mm) Hybrid (h = 20mm)

= =s

mean std mean std mean std mean std
1 1,33 0,69 1,25 0,59 1,38 1,21 0,98 0,61
2 1,32 0,75 1,18 0,53 2,46 3,21 1,06 0,68
3 1,44 0,97 1,22 0,56 2,05 2,40 1,03 0,67
4 1,40 0,74 1,16 0,50 1,40 1,02 1,08 0,69
5 1,23 0,60 1,15 0,56 1,38 1,01 1,03 0,67
6 1,35 0,74 1,24 0,62 1,58 1,39 1,05 0,71
7 1,16 0,56 1,09 0,50 1,45 1,18 1,05 0,67
8 1,29 0,68 1,23 0,58 1,93 2,61 1,11 0,79
9 1,23 0,62 1,19 0,53 1,72 1,89 1,04 0,71
10 1,54 1,08 1,19 0,58 2,60 3,43 1,05 0,73
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Results

173.

|87.3
1.48

Mean image before and after registration.
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[Baker 10]

Dimetrodon

RubberWhale

Urban

Venus
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Part

Urban RubberWhale

First row: initial correspondences. Second row: correspondences after uniqueness

constraints. Third row: correspondences after clustering.
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Experimental Validation — Optical Flow

.

——
-
—

R LI T
\ . " Q_' L

e A

First row: result for Urban sequence. Second row: result for RubberWhale sequence. Left

column: ground truth. Middle column: result obtained with the hybrid method. Right
column: result obtained with the iconic method.
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Experimental Validation — Optical Flow

-- Angular error (in degrees) End point error (in mm)

Iconic Coupled Iconic Coupled

Image sequence o5 std mean  std mean  std mean  std

Dimetrodon 5,71 4,70 5,68 4,71 0,28 0,23 0,28 0,24
Grove2 3,92 6,84 3,90 6,92 0,28 0,44 0,28 0,44
Grove3 7,88 15,88 7,97 16,01 |0,82 1,52 0,83 1,54

Hydrangea 3,73 6,55 3,63 6,45 0,33 0,49 0,33 0,51
RubberWhale 6,65 12,70 7,05 13,91 |0,20 0,36 0,22 0,45

Urban2 7,95 12,60 7,46 12,50 |1,51 3,01 1,27 2,50
Urban3 9,82 25,89 8,16 22,38 |1,43 3,11 1,21 2,54
Venus 9,00 16,80 8,97 9,99 0,58 0,76 0,56 0,73
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Group-wise registration
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Related Work

Template Driven: selection

* Averaging deformations [Guimond 00]

* Averaging mean images [Seghers 04]

* Intensity reference [Bhatia 04]

* Least biased template selection [Park 05,
Hamm 10]

- Template introduces bias

Template Driven: construction

*  Mean model [Joshi 04]

* Geometric median [Fletcher 09]

* Geodesic averaging [Avants 04]

* Minimum message length criterion [Cootes
04, Cootes 10]

- Template introduces bias

Template-free

* Congealing framework [Learned-Miller 06,
Zollei 05, Balci 07]

 Summing pairwise differences [Wachinger
09, Geng 09]

* Morphological Manifolds [Baloch 09]

- Non-modular w.r.t similarity criterion
- Not efficient; Only intensity information

7/29/2014

Our strategy
* Template-free method

e Graphical model
- Global statistical similarity criterion
- Pairwise local comparisons
- Regularization

e Implicit representation of geometric

information
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Symmetric Hybrid Registration

Input
« Agroup of images {/{1,.../in }

A group of segmentation masks {SY1 ,...,
Sin )

Output

A set of transformations {7¥1 ,...,74n },
740:Q4C Q47

Geometric constraint:

7/29/2014
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Group-wise Registration - Graph

E=Flglobal +Fllocal + Elsmoc

Deformation grid
® hode displacement

Pair-wise interaction -
Hn, /l /o /x smoothness constraint
/ / \ Pair-wise interaction -
l coupling constraint
[T
nz, [\ T \I \I \
m, | Ne \

7/29/2014 112



Geometric Information

Geometric information through segmenation mask.
— Treat geometric information as iconic one
- No explicit establishment of correspondences

Shape

pe Extraction Representation
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lconic Part — Local Pairwise Comparison

n —o—o

/i,

N3,
N2,

b
|/l1, |/ ® s ®
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lconic Part — Local Pairwise Comparison

Plicopq (Up lqg )FTRT 1w Ip (X)plif (i Tlillp (%),

7li, V// - -

/ o—o o \
uz, | o—eo o \
71 / o—9o o \
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Graph Construction — Inter-layer Edges

o Vu V.

b

N A

\
I e\

| e
A
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Unified Local Pairwise Comparison

Plhybpg (Hp,llg )=(1—a)Plicopg (Np,llg )+aPlgeopg ([lp,llg)

7/29/2014

:iconic

------------ : geometric
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lconic Part — Global Statistical Criterion

Mlglobalico (lipil ,...,Npqﬁﬂlc Tw dp (X)y (11 o TI1,Hpll (%),...

Hn, :'l ] ® 4

. C—
M \
Higherorderrela){ion ; ° :. ° \
L : :
72 / : 810 \
m, [ AT \
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lconic Part — Global Statistical Criterion

Hn, ‘ o 4

S
\®)

®
ol O L

»
////

S
—

7/29/2014 119



Fluid Regularization — Intra-layer Edges

7/29/2014

Elintra=Ui=1;

Deformation grid
® hode displacement

Pair-wise interaction -
smoothness constraint

tin, —ed

S
\®)

\\\\
¢4 ¢ ¢—
@
¢ G 66—
////

S
[
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lconic Part — Regularization Term

P(lp Lg)=[llp—1l
Fluid regularization:

Deformation grid
node displacement

Pair-wise interaction -
smoothness constraint

Potential displacement

/i,
Gli
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Experimental Validation — Data Set [CMA GMH Harvard]

Midway Histogram Equalization [Delon 04] Rerscaled and resampled to equal size
and resolution
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Initial data

[Balci 07] — low
samping rate

[Balci 07] — high

samping rate

Proposed -
iconic

Proposed -
hybrid
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Example

Initial data
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Experimental Validation — Mean

Initial data

Proposed - iconic Proposed - hybrid



Experimental Validation —STD

Initial data
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Conclusion
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Contributions

Hybrid Registration

Unified objective function

One shot optimization

Local influence of landmarks

No particular assumptions on landmarks or
on the nature of the geometric information

Symmetric Coupled Registration

Coupled framework

Symmetric geometric framework
Symmetric iconic registration
Robust

Interaction between two problems

Group-wise Registration

Consider both iconic and geometric
information
Combine both global and local criteria

Common Properties

Diffeomorphic

Efficient

Versatile

Modular w.r.t similarity criterion
Modular w.r.t interpolation method

7/29/2014
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Thank You!

Questions?
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