
 
                      

         N. Komodakis     X. Bo.         C. Wang         V.  Fecamp 

 
Discrete Inference & Learning in Artificial Vision & Medical 

Imaging 

Nikos Paragios 



Human Vision 

 

• The sensor (iris - diaphragm in a 
camera, the cornea and the 
lens are both lens-like objects, 
the retina is where the image 
is recorded - CCD sensor) 
 
 

• The processor (information is 
transferred through the optic 
nerve to the striate cortex  brain 
part where massive processing is 
performed towards complete real-
time visual scene understanding – 
almost 50% of the human brain) 

 



Artificial Vision 

 
• The input (static, video, depth, 

monochromatic, color high 
dynamic range, etc sensors) 

 
• The processor (powerful 

computers exploring input, prior 
knowledge and models) 
 

• The process (expressing task-
specific visual understanding tasks 
as mathematical inference 
problems and solve them 
approximately through computer 
simulations) 
 

 

http://www.openitmag.com/2011/06/pros-and-cons-of-laptop-and-desktop-computers/
http://createdigitalmotion.com/2010/11/kinect-hacking-and-art-round-table-why-it-matters-what-you-need-to-know/
http://louisvandeskelde.biz/les-cameras-de-video-surveillance-qui-parlent-debarquent-bientot-a-charleroi/
http://www.medicalexpo.fr/prod/toshiba-medical-systems/scanners-x-multi-coupes-pour-tomographie-corps-entier-70354-428521.html


Why artificial vision is so complex? 

 
The input 

 Large variety of sensors 
 Images/signals of varying quality 

 
The processor 

 Even the most powerful  individual 
processor  does not match up with 
a tiny portion of the human brain 
processing capacities 

 
The mathematical inference 

 We are ending up solving problems 
being ill-defined, ill-posed, non 
convex, involving non-linear 
objective functions with numerous 
local minima 

 
 

 

 
This is what you see 

 
 
 
 
 
 
 
 

This is what your computer sees 

http://sharonyoungphotography.com/paris-france/


 

 

 

Artificial Vision 



Artificial Vision Paradigm 

Model 

Optimization 
Procedure 

Model/Data 
Association 

Observations  



Left Ventricle Segmentation (risk of heart attack) 

 
 

 Parameters 
 

 Mathematical Model 
 

Computer Vision Paradigm 

 Medical image 
Modalities 

  
Mathematical  
Model 
 

Model-to-Data  
Association 

Optimization 

 Clinical Problem 

 
 

 Model-to-data-association 
 

 Optimization 
 
 
 



Main Challenges 

• Curse of Dimensionality : find a compromise between the 

expression power of the model and its complexity  [finding the right model] 

 

• Curse of Non-linearity: the association of the model parameters and 

the observations are highly non-linear [finding the right relation between measurements and 
parameters to be estimated] 

 

• Curse of Non-Convexity: the designed objective function leaves in a 

high-dimensional non-convex space [finding the right objective function and be able to solve 
it] 

 

• Curse of Non-Modularity: any solution is hardly portable to another 

application setting or another problem [do not repeat the process from scratch when moving 
from one visual task to another] 



Discrete Artificial Vision 

• Given: 
– Parameters     from a graph 

 
– A neighborhood System  
– Discrete label set  

• Assign labels (to objects) that minimize the energy: 

edges objects 

pairwise potential unary potential 

• MRF optimization ubiquitous in vision (and beyond) 



MRF hardness 

MRF pairwise potential 

MRF hardness 

linear 

exact global  
optimum 

arbitrary 

local optimum 

metric 

global optimum  
approximation  

Move left in the horizontal axis, 

But we want to be able to do that efficiently, i.e. Fast – accurately, i.e. Global minimum  

and remain low in the vertical axis  

(i.e., still be able to provide approximately optimal solutions) 



MRFs and Optimization 

– Graph-cut based techniques such as a-expansion: 

Min cut/max flow, etc 

Belief Propagation Networks generalized by TRW methods  

– Message-passing techniques: 

• The above statement is more or less true for almost all state-of-the-art 
MRF techniques 

– Deterministic Methods: 

Iterated Conditional Modes/Highest Confidence First 

– Non-Deterministic Methods: 

Mean-field and Simulating Annealing, etc 



Optimization of high-order models 

• Hypergraph  

– Parameters 

– Hyperedges/cliques 

• High-order energy minimization problem 

high-order potential 
(one per clique) 

unary potential 
(one per node) 

hyperedges 

parameters 



MRF optimization  
via dual-decomposition 



Decomposition 

• Very successful and widely used technique in 
optimization.  

 

• The underlying idea behind this technique is surprisingly 
simple (and yet extremely powerful): 

  
 decompose your difficult optimization problem into easier 

subproblems (these are called the slaves) 

 extract a solution by cleverly combining the solutions from these 
subproblems (this is done by a so called master program) 



Dual decomposition 

• The role of the master is simply to coordinate the slaves 
via messages 

original  
problem 

master 

slave 1 slave N … 

decomposition 
coordinating 

messages 

 Depending on whether the primal or a Lagrangian dual 
problem is decomposed,  we talk about primal or dual 
decomposition respectively 



An illustrating toy example (1/4) 

• For instance, consider the following optimization problem (where x 
denotes a  vector): 

 We assume minimizing each          separately is easy, but minimizing 
their sum               is hard.  

 Via these auxiliary variables         , we will thus transform our problem 
into: 

 To apply dual decomposition, we will use multiple copies xi of the 
original variables x 



An illustrating toy example (2/4) 
• If coupling constraints xi = x were absent, problem would 

decouple. We thus relax them (via Lagrange multipliers          ) and 
form the following Lagrangian dual function: 

 The resulting dual problem (i.e., the maximization of the 
Lagrangian) is now decoupled! Hence, the decomposition 
principle can be applied to it! 

Last equality assumes                     

because otherwise it holds  



An illustrating toy example (3/4)  
• The i-th slave problem obviously reduces to: 

 Easily solved by assumption. Responsible for updating only x i,   
set equal to                      minimizer of i-th slave problem for given  

 The master problem thus reduces to: 

 This is the Lagrangian dual problem, responsible to update  
Always convex, hence solvable by projected subgradient method: 

In this case, it is easy to check that: 



An illustrating toy example (4/4) 

• The master-slaves communication then proceeds as follows: 

(Steps 1, 2, 3 are repeated until convergence) 

 1. Master sends current          to the slaves 

 2. Slaves respond to the master by solving their easy problems  and 
sending back to him the resulting minimizers 

 3. Master updates each      by setting 



Binary 

variables 

 

xp(a) =1      label a is assigned to node p 

xpq(a,b) =1     labels a, b are assigned to nodes p, q 
 

enforce consistency between     
variables xp(a), xq(b) and  
variables xpq(a,b)  
 

s.t. (only one label assigned per vertex) 
 

We can apply a similar idea to the problem of MRF optimization, which 
can be cast as a linear integer program: 

Optimizing MRFs via dual decomposition 

Constraints enforce consistency between variables         and     



submodular 
edge 

non-submodular 
edge 

loopy MRF 
(with small  

   tree width) 

submodular  MRF 

tree-structured  MRF 

Algorithmic properties 



More powerful 
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Algorithmic properties 



Blind Image Deconvolution 



= 

Blurred image generation process 



=  

Blurred image generation process 



=  

Blurred image generation process 



=  

Blurred image generation process 

blur kernel = camera motion 



Blind Image deconvolution 

observed blurred 
image 

latent sharp 
image 

blur kernel 

noise 

Goal: given just I compute both x and k 



 
= quantized version of image x with just 15 colors 
 (piecewise constant) 

Yet both x and     produce almost same blurry image 

IDEA: compute    , which has much simpler structure 

High-level idea: how to reduce ill-posedness? 



MRF-based Blind Image deconvolution 



MRF-based Blind Image deconvolution 



MRF-based Blind Image deconvolution 



MRF-based Blind Image deconvolution 



MRF-based Blind Image deconvolution 



MRF-based Blind Image deconvolution 



MRF-based Blind Image deconvolution 



MRF-based Blind Image deconvolution 
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The Image Completion Problem  
• Based only on the observed part of an incomplete image, fill its 

missing part in a visually plausible way 

 We want to be able to handle: 
 complex natural images 
 with (possibly) large missing regions 
 in an automatic way (i.e. without user intervention) 

 Many applications: photo editing, film post-production, object 
removal, text removal, image repairing etc. 
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The Image Completion Problem 
• We would also like our method to be able to handle the 

related problem of texture synthesis 

• In texture synthesis, we are given as input a small texture and 
we want to generate a larger texture of arbitrary size 
(specified by the user) 
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Exemplar-based approaches 
• Key idea: fill missing region by copying exemplars i.e. pixels 

(or patches) from the observed image part 

 

 

 

 Disadvantages: 

 Successful if missing region consists of only one texture e.g. 
texture synthesis 

 Greedy approach: image is filled one patch at a time 
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Image Completion as a Discrete Global 
Optimization Problem 

• Labels L = all wxh patches from source region S 

• MRF nodes = all lattice points whose neighborhood intersects 
target region T 

• potential             = how well source patch xp agrees with source 
region around p 

• potential                       = how well source patches xp, xq agree on 
their overlapping region 

S 

T 

sample labels 
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Pose Invariant Segmentation of the  Heart 

 Challenges 

    - Human variability 

 - Complex background 

 - Low contrast 

 - Noise 

 Goal 
 - Automatic    

 - Robust 

 - Pose-invariant ! 
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Fig. Manual segmentation on 3D CT images 

Fig. Human variability 

B. XIANG et al, 3D Cardiac Segmentation with Pose-invariant Higher-order MRFs, ISBI 2012  



Shape representation 

 Point distribution model 

  

 

  

  

 

 

 

 
Point distribution model 

1{ , , }nX x x

Y X





{( , , )}i j kT x x x

S T





 Third-order cliques 

 

  

  

 

 

 

 

 
                 Triangulated mesh 



Statistical shape prior 

 Local constraints 

  

   

 Global shape 
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Statistical shape prior 

 Local constraints 

  

   

 Global shape 

 

  

  

 
 

 Pose-invariant (i.e. translation, rotation, scale) ! 
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Qualitative Results 

Fig. Segmentation results of 3D CT volumes 

  

 
 
 
 

 

Accurate boundaries with low contrast images 



Linear Registration Using High 

Order Graphs 



Unary Potentials 

 Comparison of a patch from the source 
to a patch from the target image 

 Metric-invariant 
 

 

 



High Order Cliques 

 3 aligned points 

along each axis 
 1 T-clique 



High Order potentials 

 Linear transformation : 

– Preserves barycenters 

 Condition (P) : 

 

 

 Easy to compute, only depends on the 
label 

 

 

 



High Order potentials in T-clique 

 Check condition (P) for (s,t,u) 

 

 Similarity registration : 

– Images of (s,v,u) form a right 
isosceles triangle 

 Rigid registration : 

– Images of (s,v,u) form a right 
isosceles triangle, with the 
same size as (s,v,u) triangle 



Some results 
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HIGHER-ORDER NON-RIGID 3D SURFACE 
MATCHING 



High-order Graph Matching 

Graph 1 Graph 2 



High-order Graph Matching 

Graph 1 Graph 2 



High-order Graph Matching 

Graph 1 Graph 2 



High-order Graph Matching 
a

b

c

Graph 1 Graph 2 



Experimental Results 



Experimental Results 



Discrete Artificial Vision 

• Given: 
– Parameters     from a graph 

 
– A neighborhood System  
– Discrete label set  

• Assign labels (to objects) that minimize the energy: 

edges objects 

pairwise potential unary potential 

• MRF optimization ubiquitous in vision (and beyond) 



Optimization of high-order models 

• Hypergraph  

– Parameters 

– Hyperedges/cliques 

• High-order energy minimization problem 

high-order potential 
(one per clique) 

unary potential 
(one per node) 

hyperedges 

parameters 



Conclusions 

• Discrete Graphical Models, is a promising answer to artificial 
vision 

 

– Curse of Dimensionality : Prior Knowledge either through anatomy 
of machine learning techniques towards dimensionality reduction 

– Curse of Non-linearity: Model Decomposition / Data association 
allows direct support estimation of parameter selection from the 
images 

– Curse of Non-Convexity: Regularization terms / dropping out of 
constraints   can improve the optimality properties of the obtained 
solution  

– Curse of Non-Modularity: Model/Data Association/Inference 
Decomposition and use of gradient free methods 



Future 

• The future belongs to: 

 

– Higher order structured models (Grammars) 

 

– Message Passing Methods running on parallel 
architectures   

 

– Grammars [focus was up to now on inference and not on 
the design of the objective function] 

• Learning their parameters 

• Learning their derivation sequences 
 



Discrete Image Registration 

Nikos Paragios 

Benjamin Glocker, Aristeidis Sotiras, Nikos 
Komodakis, Yangming Ou, Christos Davatzikos, 

Nassir Navab 
 

7/29/2014 69 

http://www.cbica.upenn.edu/sbia/personnel.html


Outline 
1. Context 

 

2. Image Registration 

 

3. Hybrid Registration 

 

4. Symmetric Hybrid Registration 

 

5. Group-wise Registration 

 

6. Conclusion 
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Context 
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Image Registration: Definition 

Synonyms: 

Image alignment; Image fusion; Image matching; Motion estimation; 
Optical flow; Image correspondence problem 

7/29/2014 72 

 Establish correspondences 
between images. 

 

 Estimate transformation so 
that the images are aligned. 

 



Challenges 
 

• Important time constraints 

 

• Important volume of data 

 

• Increasing data dimensionality 

 

• Vast range of applications 
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Efficiency 

Versatility 



Image Registration 
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Image Registration 
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Registration  

Deformation Model 

Similarity Criterion 

Optimization Strategy 



Image Registration: Deformation Model 
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Physical models 
 

• Elastic [Bajscy 89, Davatzikos 97] 
• Viscous fluid [Christensen 96] 
• Diffusion [Thirion 98, Pennec 99, 

Vercauteren 07] 
• Diffeomorphisms [Joshi 00, Beg 05] 

 
  Computational intensive 

Interpolation theory 
 

• Radial Basis Functions [Bookstein 91, Rohr 
01, Rohde 03] 

• Piecewise Affine [Pitiot 06, Arsigny 05] 
• Free Form Deformations [Rueckert 99, 

Rueckert 06] 
 

  Fewer degrees of freedom 

Constraints 
 

• Topology preservation [Droske 03, Noblet 
05, Haber 06, Sdika 08] 

• Volume preservation [Rohlfing 03, Haber 
04, Mansi 11] 

• Rigidity constraints [Loeckx 04, Staring 07, 
Modersitzki 07] 
 

   Task specific 

Our strategy 
 

• Cubic B-Splines Free Form Deformations 
- Efficient 
- Implicit regularization 
- Topology preservation through hard 

constraints 
- Coarse-to-fine scheme to capture 

complex deformations 
 



Image Registration: Similarity Criterion  
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Iconic  
 

• Mono-modal 
- Intensity-based: SAD, SSD, CCor and 

CCoef [Kim 04, Avants 08] 
- Feature-based: GM [Shen 02], Gabor 

[Ou 10] 
• Multi-modal 

- Information-theoretic measures: MI 
[Wells 96, Collignon 95], NMI 
[Studholme 97], CR [Roche 98], f-Info 
[Pluim 04], Local evaluations 
[Hermosillo 02], 2nd-order MI 
[Rueckert 00], NMI + G [Pluim 00] 

- Reduction to mono-modal problem: 
Simulate one modality [Wein 08, 
Michel 10], Map to a common space 
[Maintz 01, Haber 07, Michel 11] 
 

  Dense solution, computational intensive 
  Initial conditions, treat all points equally 

Geometric 
 

• Spatial transformation 
- Known correspondences: Procrustes 

analysis [Goodall 99], RBFs [Rohr 01], 
diffeomorphic matching [Guo 06]  

- Unknown correspondences: Affine 
moment descriptors [Heikkila 04], 
Point sets as PDFs [Glaunes 04, Tsin 
04, Wang 09], as distance functions 
[Leow 05, Savinaud 06]  

• Correspondences 
‐ Similarity solely [Mikolajczyk 05] 
‐ Structural constraints [Leordeanu 05, 

Berg 05, Duchenne 10, Wang 10] 
• Spatial transformation + correspondence 

‐ ICP [Besl 92], EM-ICP  [Granger 02], 
TPS-RPM [Chui 03] 
 

  Sparse, limited accuracy 
  Efficient, robust to large deformations 

 Our strategy 
 
• Hybrid 

 
 

  Exploit both intensity and geometric info 
  Get the best of both worlds 

 
 



Image Registration: Optimization 
Strategy 
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Continuous  
 
• GD [Rueckert 99, Droske 03] 
• Conjugate gradient [Miller 01, Joshi 07] 
• GN [Vercauteren 09] 
• LM [Thevenaz 00, Kybic 03] 
• Stochastic GD [Klein 07, Balci 07] 
 
  Differentiable functions, local search 

Discrete 
 

• Graph-based [Tang 07, Liao 11] 
• Message passing [Murphy 99, Felzenszwalb 

06] 
• Linear-programming approaches [Glocker 

08, Kwon 08, Zikic 10] 
 
 Non-differentiable functions, global search 

Miscellaneous 
 

• Heuristics and Meta-heuristics [Shen 02, 
Xue 04, Liu 04] 

• Evolutionary methods [Klein 07, 
Santamaria 11] 
 

   No optimality guarantees 
   General 

Our strategy 
 

• Discrete: MRF formulation 
 
 
 
 
 



Image Registration: Optimization 
Strategy 
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Continuous  
 
• GD [Rueckert 99, Droske 03] 
• Conjugate gradient [Miller 01, Joshi 07] 
• GN [Vercauteren 09] 
• LM [Thevenaz 00, Kybic 03] 
• Stochastic GD [Klein 07, Balci 07] 
 
  Differentiable functions, local search 

Discrete 
 

• Graph-based [Tang 07, Liao 11] 
• Message passing [Murphy 99, Felzenszwalb 

06] 
• Linear-programming approaches [Glocker 

08, Kwon 08, Zikic 10] 
 
 Non-differentiable functions, global search 

Miscellaneous 
 

• Heuristics and Meta-heuristics [Shen 02, 
Xue 04, Liu 04] 

• Evolutionary methods [Klein 07, 
Santamaria 11] 
 

   No optimality guarantees 
   General 

 Our strategy 
 

• Discrete: Belief Propagation [Alchatzidis 11] 
- Generality 
- Optimality 
- Per-instance approximation factors 
- Speed 



Hybrid registration 
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Basic Idea of Intensity-based Registration 

• Image registration as an optimization problem 

 
 

•  Target and source Image: 

 

 

•  Transformation: 

 

 

•  Image metric: 



Dimensionality Reduction 

• Linear combination of control points 

 

 

 

 

 

 

• e.g. Free-Form Deformations (Sederberg et al. 1986; Rueckert et al. 1999) 

 

 

 

 



(Weighted) Block Matching 

• Redefinition of data term w.r.t. control lattice 

 

 

 

 

 

 

• Pixel-wise image metrics weighted by normalized basis functions 

• image points closer to a control point gain more influence on its matching 
energy 

• Statistical image metrics (e.g. mutual information, cross correlation) 

• evaluation of image metric in local patches centered at the control points 

• block size depends on control lattice resolution 



Discrete Labeling Problem 

• Markov Random Field formulation with pairwise interactions 

 

 

• Unary potentials (matching): 

 

 

 

• Pairwise potentials (smoothness): 

p q r 

s t u 

v w x 

p q r 

s t u 

v w x 

Nodes 

Edges 



Deformable Registration by Discrete Optimization 

Update computation: 
1. For each control point CPi 

 For a discrete number of displacements 
evaluate approximative change in similarity measure 

[Glocker 2008] 

+X -X 

+Y 

-Y 

p q r 

s t u 

v w x 

p q r 

s t u 

v w x 

Low-dimensional deformation model (B-Spline FFD) 

2. Compute approximately optimal combination of the  
pre-computed displacements w.r.t. chosen regularization 
with fast and accurate discrete optimization techniques  



Deformable Registration by 
Discrete Optimization 

Properties:  

– No derivative computation required 

– Similar efficiency for any difference 

measure 

– Larger/non-local search range for 

each CP  

 increased capture range 

– Computes only local versions of 



Related Work 
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Initialization 
 

• Surface-iconic [Liu 04, Postelnicu 09, 
Gibson 09] 

• Landmark-iconic [Johnson 02, Auzias 11] 
• Segmented structure-iconic [Camara 07] 

 
  Independent solutions 
  robustness, no coupling guarantee 

Constraint 
 

• Soft sparse constraints [Hartkens 02, Hellier 
03, Papademetris 04, Rohr 04, Avants 06] 

• Soft dense constraints [Worz 07, Biesdorf 
09, Azar 06]  

• Hard constraint [Joshi 07] 
 

  One-way flow of information 

Coupled 
 

• Landmark-iconic [Cachier 01] 
• Surface-iconic [Joshi 09] 

 
   One objective function 
   Mono-modal 
   Constraints on landmarks 
   Spherical geometries 

Our strategy 
 

• Coupled approach 
‐ Discrete framework 
‐ One-shot optimization 
‐ Any similarity criterion 
‐ Diffeomorphic 
‐ No constraints on landmark 

 



Hybrid Registration 
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0 



Graph Matching 

Graph 1 Graph 2 



Graph Matching 

Graph 1 Graph 2 



Graph Matching 

Graph 1 Graph 2 



Geometric Part – Graph 
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Landmark 
correspondence 

Pair-wise interaction -  
geometric constraint 



Potential 
correspondence 

Geometric Part – Data Term 
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Landmark 
correspondence 



Geometric Part – Regularization Term 
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Landmark 
correspondence 

Pair-wise interaction -  
geometric constraint 

Potential 
correspondence 



Iconic Part – Graph 
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Deformation grid 
node displacement 

Pair-wise interaction -  
smoothness constraint 



Iconic Part [Glocker 08] 
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Deformation grid – Cubic B-spline FFD: 
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Deformation grid 
node displacement 

Iconic Part – Data Term 



Iconic Part – Regularization Term 
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Elastic regularization: 

Deformation grid 
node displacement 

Pair-wise interaction -  
smoothness constraint 

Potential displacement 

Initial displacement 

Total displacement 



Hybrid Part - Graph 
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Deformation grid 
node displacement 

Pair-wise interaction -  
coupling constraint 

Landmark 
correspondence 



Hybrid Part – Coupling Constraint 
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Pair-wise interaction - 
coupling constraint 

Potential displacement 

Initial displacement 

Total displacement 

Landmark 
correspondence 



Hybrid Registration - Graph 
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Deformation grid 
node displacement 

Pair-wise interaction -  
coupling constraint 

Landmark 
correspondence 

Pair-wise interaction -  
smoothness constraint 

Pair-wise interaction -  
geometric constraint 



Experimental Validation – Qualitative 
Results 
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Visual results before (left column) and after registration using the proposed 
iconic (middle column) and hybrid approach (right column). The results are 
given in the form of a checkerboard where neighbouring tiles come from 
different images. 



Experimental Validation – Quantitative 
Results 
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End point error (in mm) 

 
# 

Iconic (h = 60mm) Hybrid (h = 60mm) Iconic (h = 20mm) Hybrid (h = 20mm) 

mean std mean std mean std mean std 

1 1,33 0,69 1,25 0,59 1,38 1,21 0,98 0,61 

2 1,32 0,75 1,18 0,53 2,46 3,21 1,06 0,68 

3 1,44 0,97 1,22 0,56 2,05 2,40 1,03 0,67 

4 1,40 0,74 1,16 0,50 1,40 1,02 1,08 0,69 

5 1,23 0,60 1,15 0,56 1,38 1,01 1,03 0,67 

6 1,35 0,74 1,24 0,62 1,58 1,39 1,05 0,71 

7 1,16 0,56 1,09 0,50 1,45 1,18 1,05 0,67 

8 1,29 0,68 1,23 0,58 1,93 2,61 1,11 0,79 

9 1,23 0,62 1,19 0,53 1,72 1,89 1,04 0,71 

10 1,54 1,08 1,19 0,58 2,60 3,43 1,05 0,73 

all 1,33 0,11 1,19 0,05 1,79 0,45 1,05 0,03 
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Mean image before and after registration. 

Experimental Validation – Qualitative 
Results 



Experimental Validation – Data Set 
[Baker 10] 
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Dimetrodon 

RubberWhale 

Urban 

Venus 



Experimental Validation – Geometric 
Part 
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First row: initial correspondences. Second row: correspondences after uniqueness 
constraints. Third row: correspondences after clustering. 

Urban RubberWhale 



Experimental Validation – Optical Flow 
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First row: result for Urban sequence. Second row: result for RubberWhale sequence. Left 
column: ground truth. Middle column: result obtained with the hybrid method. Right 
column: result obtained with the iconic method. 



Experimental Validation – Optical Flow 

Angular error (in degrees) End point error (in mm) 

 
Image sequence 

Iconic Coupled Iconic Coupled 

mean std mean std mean std mean std 

Dimetrodon 5,71 4,70 5,68 4,71 0,28 0,23 0,28 0,24 

Grove2 3,92 6,84 3,90 6,92 0,28 0,44 0,28 0,44 

Grove3 7,88 15,88 7,97 16,01 0,82 1,52 0,83 1,54 

Hydrangea 3,73 6,55 3,63 6,45 0,33 0,49 0,33 0,51 

RubberWhale 6,65 12,70 7,05 13,91 0,20 0,36 0,22 0,45 

Urban2 7,95 12,60 7,46 12,50 1,51 3,01 1,27 2,50 

Urban3 9,82 25,89 8,16 22,38 1,43 3,11 1,21 2,54 

Venus 9,00 16,80 8,97 9,99 0,58 0,76 0,56 0,73 
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Group-wise registration 
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Related Work  
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Template Driven: selection 
 

• Averaging deformations [Guimond 00] 
• Averaging mean images [Seghers 04] 
• Intensity reference [Bhatia 04] 
• Least biased template selection [Park 05, 

Hamm 10] 

 
   Template introduces bias  
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Template Driven: construction 
 

• Mean model  [Joshi 04] 
• Geometric median [Fletcher 09] 
• Geodesic averaging [Avants 04] 
• Minimum message length criterion [Cootes 

04, Cootes 10] 
 
   Template introduces bias 

Template-free 
 

• Congealing framework [Learned-Miller 06, 
Zollei 05, Balci 07] 

• Summing pairwise differences [Wachinger 
09, Geng 09] 

• Morphological Manifolds [Baloch 09] 
 

   Non-modular w.r.t similarity criterion 
   Not efficient; Only intensity information  

Our strategy 
 

• Template-free method 
 

• Graphical model 
‐ Global statistical similarity criterion 
‐ Pairwise local comparisons 
‐ Regularization 

 
• Implicit representation of geometric 

information 



Symmetric Hybrid Registration 
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… 

… 



Group-wise Registration - Graph 
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Deformation grid 
node displacement 

Pair-wise interaction -  
coupling constraint 

Pair-wise interaction -  
smoothness constraint 



Geometric Information  
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Geometric information through segmenation mask. 

Shape Extraction 

Shape 
Representation 

 Treat geometric information as iconic one 
 No explicit establishment of correspondences 



Iconic Part – Local Pairwise Comparison  
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Iconic Part – Local Pairwise Comparison  
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Graph Construction – Inter-layer Edges 
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Unified Local Pairwise Comparison  
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: iconic 

: geometric 



Iconic Part – Global Statistical Criterion  
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Higher order relation 



Iconic Part – Global Statistical Criterion  
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Fluid Regularization – Intra-layer Edges 
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Deformation grid 
node displacement 

Pair-wise interaction -  
smoothness constraint 



Iconic Part – Regularization Term 

7/29/2014 121 

Fluid regularization: 

Deformation grid 
node displacement 

Pair-wise interaction -  
smoothness constraint 

Potential displacement 



Experimental Validation – Data Set [CMA GMH Harvard] 
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Midway Histogram Equalization [Delon 04]  Rerscaled and resampled to equal size 
and resolution   



Experimental Validation – Qualitative 
Results 
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Initial data 

[Balci 07] – low 
samping rate 

[Balci 07] – high 
samping rate 

Proposed - 
iconic 

Proposed - 
hybrid 
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Experimental Validation – Zoom in One 
Example  

Initial data [Balci 07] – LSR [Balci 07] – HSR 

Proposed - iconic Proposed - hybrid 
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Experimental Validation – Mean 

Initial data [Balci 07] – LSR [Balci 07] – HSR 

Proposed - iconic Proposed - hybrid 
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Experimental Validation – STD 

Initial data [Balci 07] – LSR [Balci 07] – HSR 

Proposed - iconic Proposed - hybrid 



Conclusion 
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Contributions 
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Hybrid Registration  
 
 Unified objective function 
 One shot optimization 
 Local influence of landmarks 
 No particular assumptions on landmarks or 

on the nature of the geometric information 

Symmetric Coupled Registration  
 
 Coupled framework 
 Symmetric geometric framework 
 Symmetric iconic registration 
 Robust 
 Interaction between two problems 

Group-wise Registration  
 
 Consider both iconic and geometric 

information 
 Combine both global and local criteria 
 

Common Properties 
 
 Diffeomorphic 
 Efficient 
 Versatile 
 Modular w.r.t similarity criterion 
 Modular w.r.t interpolation method 



Thank You! 
 

Questions? 
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