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target image source image 

Image Registration 
Spatially align two input images, by computing the spatial transformation, 
such that the transformed source image matches the target image 

transformed source image 



• Subjects move  
(alignment of temporal series, patient positioning) 

 

• Subjects change 
(longitudinal studies, pre- / post-treatment images) 

 

• Subjects differ 
(creation of atlases, segmentation transfer) 

Reasons for Deformable Registration 



Subjects Move  
(alignment of temporal series) 

Animated images from the webpage of  

The POPI-model, a Point-validated Pixel-based Breathing Thorax Model 
http://www.creatis.insa-lyon.fr/rio/popi-model 
 

Vandemeulebroucke, J., Sarrut, D. and Clarysse, P.. The POPI-model, a point-validated pixel-based breathing thorax model.  
In XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), 2007. 



Subjects Move  

D. Zikic, S. Sourbron, X. Feng, H. J. Michaely, A. Khamene, N. Navab  
Automatic Alignment of Renal DCE-MRI Image Series for Improvement 
of Quantitative Tracer Kinetic Studies. SPIE Medical Imaging, 2008. 
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Subjects change over time 
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Subjects Differ 

Application Example:  
Non-Linear registration of brain MRI for Segmentation Propagation 

IXI Database 
http://biomedic.doc.ic.ac.uk/brain-development/ 

[Rohlfing 2004],[Warfield 2004],[Heckemann 2006],[Klein 2009], 
[Multi-Atlas Labeling Workshop at MICCAI 2012] 

http://biomedic.doc.ic.ac.uk/brain-development/
http://biomedic.doc.ic.ac.uk/brain-development/
http://biomedic.doc.ic.ac.uk/brain-development/
http://biomedic.doc.ic.ac.uk/brain-development/
http://biomedic.doc.ic.ac.uk/brain-development/


Intensity-based Image Registration 

difference image difference image 

source image IT 

target image IT 

transf. source ISo  

target IT 

Compute deformation  , such that the transformed source ISo matches target IT 

by minimizing the image-based difference measure ED . 

transformation  

  



Some Basic Classes of Registration 
Methods 

Feature-based Registration 

extraction & matching of 
specific spatial features 

Intensity-based Registration 

image-based difference 
measure 

Linear/Rigid Registration Deformable Registration 



Intensity-based Deformable Registration  
as Energy Minimization 

Difference Measure between: 
• Target image IT 

• Warped source image Iso 
Examples: 

• Sum of squared differences (SSD) 
• Sum of absolute differences (SAD) 
• Correlation Coefficient (CC) 
• Correlation Ratio (CR) 
• Mutual Information (MI) 

Regularization term: 
• Models the behaviour of 

underlying elastic model 
(internal energy) 

• Incorporates prior knowledge 
• can be required to constrain 

problem 
Examples: 

• Diffusion (1st-order) 
((in-)homogeneous, (an-)isotropic) 

• Curvature/Bend. Energy (2nd-order) 
• Linear Elasticity 

Transformation  
can assumed as element of: 
• Can be modeled as elemet of a 

Hilbert space (L2, Sobolev space) 
or group/manifold 
(group of diffeomorphisms) 

• Has to be parametrized for digital 
representation 
(B-Spline FFDs, DCT, RBFs) 



Deformable Registration: General Framework 

Optimization 

Transformation 

Source Image 

Target Image 

Energy Model (E) Deformation Model 

Difference Measure (ED) Regularization Term (ER) 

update transformation warp source image 



Warp source image by transformation 

update field transformation 

(regularization)  

source (warped) 

target 

Or, as a movie: 

Compute  
update 

difference image 

Accumulate 
updates 



Deformation models 

PART I 



Deformation 
Modelling 

Deformation Model 
(which theoretical model should govern the process) 

Elastic 
(regularization term) 

Fluid 
(deformation space) 

Deformation Parametrization 
(how to represent a deformation on a computer) 

(approximation to the theoretical model) 

“Non-Parametric” 
Dense 

(actually highly parametric) 

Parametric 
Free-form Deformations 

Finite Element Model 
Cosine/Sine/fourier 

Transformations 

Deformation Topology/Structure 
(how to combine deformations) 

Vector Space 
(deformations are added) 

Group Structure 
(deformations are 

composed) 

Model 
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Deformation process 

? ? 

? ? 

What is the intensity 
of ID(x1) where x1 is a 
pixel location in the 
deformed image ID? 

Pull from IS(x+u(x)) 
but x+u(x) is not a 
pixel in the source 
image 

So interpolate IS(x+u(x)) 
by considering 
neighboring pixels 

? ? 

? ? 



 Classification of Deformation Models 

Knowledge-based 

Basis function expansions 

Constraints 
 

Physical models 



Physical Models 

Force 
 

Model 
of the underlying 

object/patient 

Displacement 
= Reaction of the  

Model to the Force 

• Simulation point of view 
 

 

 

 

 
 

• Variety of Forces: 
– Image similarity 

– Distances between landmarks 

• Variety of Models 
– Finite Element 

– Mass Spring 
 



Physical Models 

Elastic Body Viscous Fluid 

Diffusion 
 

Curvature 



Physical Models 

Viscous fluid flow 
• Navier-Stokes PDE: 

 
 

 
 Images from [Christensen 94] 

“Time progression of the fluid trans- 
formation applied to a rectangular grid“ 

Source 

Target 

Result Elastic 

Result Fluid 



Physical Models 

Viscous fluid flow 
• Navier-Stokes PDE: 

 
 

 
Fluid type registration = regularization of 
updates 
(UPDATES = change of displacement = 
VELOCITIES ) 

 

Challenges 
• Avoid folding of field 
• No transport in homogeneous regions 

 

Images from [Christensen 94] 

“Time progression of the fluid trans- 
formation applied to a rectangular grid“ 

Source 

Target 

Result Elastic 

Result Fluid 



Curvature 
• Differential equation 

 
 
 
 
 
Features 
• Does not penalize affine linear 

transformations 
• Affine pre-registration may not 

be necessary 

Physical Models 

Images from [Fisher and Modersitzki 04] 



Basis Function Expansion  



Basis Function Expansion  

• Motivated from function interpolation and approximation 
theory 

• Transformation as a linear basis expansion in Rd, where 
Bk is a basis function 

 

 

• Few degrees of freedom 
– Efficiency 

• Implicit smoothness of the field 

 



 

 

 

 

 

• The model is also projected to the basis 

– Smaller system 

– May result in a simplification of the problem 

Basis function expansion + Model  

Force  
projected to Basis 

Model 
projected to Basis 

Displacement 
= Reaction of the  

Model to the Force 



Basis function expansion – Shape of Bk‘s 

• Same shape of all Bk‘s 
Bk‘s are translated versions of B:  
Bk(x)=B(x-ck) 
– Free-form deformation (FFD) B-Splines 

 

 

 

• Different shape of Bk‘s 
– Fourier/Cosine Bases 

– RBFs with different parameters 
(e.g. Gaussians with different variance) 
 



Basis function expansion – Support of Bk‘s 

• Global Support 
 
– Fourier/Cosine Bases 

 

– Radial basis functions RBFs 
(e.g., Thin-plate Splines (TPS)) 

– Gaussians (in theory) 

 
• Compact Support 

– B-Splines 

– Some RBFs 

– Gaussians (in practice) 
 



Localization  
of Bk‘s 

Basis function expansion – Localization of Bk‘s 

localized 
global 

(no localization) 

regular grid 
irregular 

sampling points 

dense sparse 

Adaptive bases, Thin-plate Splines (TPS) 

Trigonometric bases (Fourier/Sine/Cosine bases) 

Free-form Deformations (FFD) Non-parametric Approaches: control grid = image grid 



Basis Function Expansion  

Basis from signal processing 
 

Locally Affine Deformations 

Free-Form Deformations Radial Basis Functions 



Radial basis functions 

 
 
 : are estimated by solving set 
of  linear equations 
 : basis function center or 
 landmark 
 
Features 
• Global support 
• Tend asymptotically to zero 
• Positive definite functions 
 Closed form solution 
 Solvable for all possible sets of 

landmarks that are not 
coplanar  

<< 

Basis Function Expansion  



Basis function expansion – Radial basis functions 

Thin Plate Splines [Bookstein 91] 

Interpolating splines :  

 
 
A and B define an affine transformation 
In 2D, 
 
Features 
 Minimize bending energy 
 Arbitrary landmark positions 
✖ Global support 
 Important number of landmarks 

to recover local deformations 
✖ Not topology preserving 
✖ High computational demands when 

number of landmarks increase 
 

30 



Basis function expansion 

Cubic B-Splines Free-Form 
Deformation (FFD) 

 

• Computer graphics technique for 3D 
object modeling  [Sederberg 86] 

• Parameterization by a grid of control 
points 

• Object is deformed by manipulating 
the control points 

 
 
 

A dataset is initially embedded in a uniform 
lattice of control points: (top) 3D view and 
(bottom) parallel projection. (Images from 
[Merhof 07]) 



Cubic B-Splines Free-Form 
Deformation (FFD) 
 
Tensor product of corresponding 1-D 
cubic B-splines 
 
 
where 
 
 
and 
 
 
 
 

B-spline basis functions Basis function expansion 

Max displacemt < 0.4 Grid spacing 
 diffeomorphic transformation 



Basis function expansion 

Bi 

pi 

Bj 

pj 

Cubic B-Splines Free-Form Deformation (FFD) - Example 



Basis function expansion 

Wavelet: [Amit 94, Wu 00, Geffen 03] 

 
 

 

where i = {H, V, D} and for separable 
scaling and wavelet functions: 

 

 

 

Features 

1. Local support 

 Recover local changes 

 
D 

V 

H 
D 

H 

V 

H 

D V 
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Basis function expansion 

Locally affine [Collins 97, Hellier 01, 

Pitiot 06, Zhang 06, Commowick 08] 
 
 
 
1. Partition image to triangles or 

tetrahedra 
2. Nodes are parameters of 

transformation 
 

Features 
 Efficiency 
✖ Lack of smoothness in regions 

boundaries 

 
 

Images from [Buerger 11] 

Level 0 
 

Level 1 
 

Level 2 
 



Basis function expansion 

Locally affine  
 
• Direct fusion efficient but not 

invertible in general 
 

• Non overlapping parts – hybrid 
affine/non-linear interpolation 
scheme [Pitiot 06] 
 

• Poly-affine [Arsigny 09] 
- ODEs 
- Diffeomorphic 

  
 

Images from [Pitiot 06] 

Images from [Arsigny 09] 



Similarity Metrics 

PART II 



Deformable Registration: General Framework 

Optimization 

Source Image 

Target Image 

Energy Model (E) Deformation Model 

Difference Measure (ED) Regularization Term (ER) 



Requirements on similarity measure 

• Extremum for correctly aligned images 

 

• Smooth, best convex 

• Differentiable 

• Fast computation 

 



Difference Measures 

Volume X Volume Y(ϕ) 

 
i

ii yx
N

SSD 2)(
1

Sum of Squared Differences 

 
i

ii yx
N

SAD
1

Sum of Absolute Differences: 

Less sensitive on large intensity 

differences than SSD 

Volume X Volume Y(ϕ) 



Normalized Cross Correlaiton 
(NCC) 

Volume X Volume Y(ϕ) 

NCC =
1

N

(xi - x)(yi - y)

s xs yi

å
Normalized Cross Correlation: 

Expresses the linear relationship between voxel 

intensities in the two volumes 

pixels ofNumber  :

deviation Standard:

Mean:

N

x

x



Multi-Modal Registration 

• More complex intensity relationship 

 

 

 

 

• Approaches: 

– Simulate one modality from the other one 

– Apply sophisticated similarity measures 

? 

CT MR 



Information Theoretic Approach 



Histogram calculation 

Image Histogram 

Bins 

4        3       3       6 

1/4   3/16   3/16  3/8 

counts 

probs 



Joint histogram calculation 
Image X Image Y 

Y 

X 

1 

1 

1 

2 1 3 

Overlap 

Joint Histogram 



Joint Histogram 

• Histogram for images from different modalities 

 

46 

Joint Histogram Target Image 

Source Image 
Not Aligned 

Aligned 



Entropy 

Shannon Entropy, developed in the 1940s 
(communication theory) 


i

ii ppH log

i 

pi 

i 

pi 

uniform distribution 
→ maximum entropy 

any other distribution 
→ less entropy 



Mutual Information (MI) 




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xy
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jpip

jip
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YXHYHXHYXMI

)()(

),(
log),(
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• Maximized if X and Y are perfectly aligned 

• H(X) and H(Y) help to make the measure more robust 

• Maximization of mutual information leads to 
minimization of joint entropy 



Historical Note 

• Minimum Entropy Registration 
– Collignon A., Vandermeulen, D., Suetens, P., and Marchal, G. 3D 

multi-modality medical image registration using feature space 
clustering. CVRMED April 1995. 

• Maximum Mutual Information Registration 
– Viola, P. and Wells, W. Alignment by maximization of mutual 

information. In Proceedings of the 5th International Conference 
of Computer Vision, June 20 – 23, 1995. 

– Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, 
Marchal G, Automated multi-modality image registration based 
on information theory. IPMI June 26, 1995. 

– Viola, P. Alignment by maximization of Mutual Information. MIT 
PhD Thesis, June 1995. 



Improvements to MI 

• Normalization of MI 
• Density estimation 

– Parzen window 
– Partial volume distribution  
– Uniform volume histogram 
– NP windows 

• Spatial information 
 

• Tutorial at MICCAI 2009:  
Information theoretic similarity measures for image 
registration and segmentation: Maes, Wells, Pluim 
http://ubimon.doc.ic.ac.uk/MICCAI09/a1882.html  

http://ubimon.doc.ic.ac.uk/MICCAI09/a1882.html


Similarity Measure 

Optimization 

Registration Framework Images 

? 

Pre-processing 

1. Image gradients 

2. Entropy images 

3. Multi-resolution 

4. Attributes 

5. SIFT 



Similarity Measure 

Optimization 

Registration Framework Images 

? 

Pre-processing 

1. Image gradients 

2. Entropy images 

3. Multi-resolution 

4. Attributes 

5. SIFT 



Multi-Resolution Registration 

• Perform registration on multiple resolutions 

1. Smooth  

2. Downsample 

• Advantages: 

– Speed: down-sampled images 

– Convergence: smoother cost func  

 



Similarity Measure 

Optimization 

Registration Framework Images 

? 

Pre-processing 

1. Image gradients 

2. Entropy images 

3. Multi-resolution 

4. Attributes 

5. SIFT 



Similarity Measure 

Optimization 

Registration Framework Images 

? 

Pre-processing 

1. Image gradients 

2. Entropy images 

3. Phase 

4. Multi-resolution 

5. Attribute vectors 



descriptor 

… 

SIFT  
Scale Invariant Feature Transform 

Gradient orientation histogram 
Lowe, Distinctive image features from scale-invariant keypoints, IJCV, 2004 
Tola et al., A Fast Local Descriptor for Dense Matching 



SIFT features 

Matt’s work for 3D SIFT 

4 x 4 x 8 = 128 

2 x 2 x 8 = 32 



Optimization Methods 

PART III 



Deformable Registration: General Framework 

Optimization 

Source Image 

Target Image 

Energy Model (E) Deformation Model 

Difference Measure (ED) Regularization Term (ER) 



Structure of General Energy Formulation 

Depends on deformation through image IS   
 
 
 Non-linearity 

• In many cases, the error term for the regularization is 
linear in the displacement: eR(u) = (Lu)*Lu = u*L*Lu 

• the linear operator is mostly a differential operator 
(e.g. L=, L=, ... ) 

Non-linearity prohibits closed-form solutions 
→Local optimization problem 

→Solutions = local optima 

→Methods: Iterative (accumulation of updates) 



Registration  
=  

Iterative Accumulation of Displacement Updates 



Warp source image by transformation 

update field transformation 

(regularization)  

source (warped) 

target 

Compute  
update 

difference image 

Accumulate 
updates 



Smoothing operator, e.g. Gaussian 
Depends on: 
• Deformation space (L2, Sobolev space, ...) 
• Parametrization (B-Spline FFD, ...) 
• Optimization scheme 

/ K

General Update Structure: 
Smoothed noisy update estimate 



Registration  
=  

Iterative Accumulation of SMOOTHED Displacement Updates 



How to determine the updates ui? 

 different optimization schmes 
 

1. Gradient-based Optimization 

 

 

2. Gradient-free/Discrete Optimization 



Steepest Gradient Descent 

• Energy: 

// compute update based on gradient of energy 
 
 
// apply the update 

Starting with initial φ0, repeat until convergence: 

Only the derivative of the energy w.r.t the deformation is required: 

 
derivative of difference measure 
derivative of regularization term 
 



• General regularization term: 

EXAMPLE: Steepest Gradient Descent 
Derivative of the Regularization Term 

• Assume: 

– Squared L2 norm: 
 

 

– Error term is linear in u: 

• Then, the derivative reads: 

For diffusion regularization, we get: 

General formulation of the derivative for a regularization term with a quadratic form: 



EXAMPLE: Steepest Gradient Descent 
Derivative of the Difference Measure  

Point-wise evaluation at x: point-wise rescacling of the warped gradient of Is 

For the SSD we get: 

General formulation of the derivative of the difference measure: 



Summary: Steepest Gradient Descent 

// compute update based on gradient of energy 
 
 
 

 
// apply the update 

Starting with initial φ0, repeat until convergence: 



Gradient-based Optimization Methods 
Method Update Rule 

Steepest Descent 
+  Simple implementation 

+ Only gradient required 
–   Numerical instable: requires small time 

steps  many iterations needed 

PDE-inspired 
Semi-implicit Discretization 

+  Numerically stable also for large time steps 

+  Linear operator determined by regularization 
 difference measure easily exchangable 

–  Poor convergence speed 

Gauß-Newton 
+ Numarically stable also for large time steps 
+ Good convergence speed 
–  Linear operator depends on both,  

the regularization and the difference term 
–  Je must be sparse/small for efficient treatment 

Preconditioned 
Gradient Descent 
(Quasi-Newton) 

With P approximating the Hessian of E, e.g.: 
• Jacobi preconditioning 
• For def. Registration: [Zikic 2010] 

Most general formulation of the 
above. Properties depend heavily on 
choice of P.  
 

“Finding a good preconditioner (...) is often 
viewed as a combination of art and science.“ 
Y. Saad, Iterative Methods for Sparse Linear Systems 

 

Comment 

Levenberg-
Marquardt 

A mixture of Steepest Gradient Descent 
and Gauß-Newton 
 

L-BFGS & 
Conjugate Gradient 

+ Require only gradient evaluations 
+ Good convergence speed 
–  Convergence depends on exact time-step 

requirements 



General Optimization References 

BOOK: 
Numerical Optimization 
Jorge Nocedal and Stephen J. Wright 
Springer Series in Operations Research 

 

Techreport: 
Madsen, K., Nielsen, H. and Tingleff, O.  
Methods for Non-linear Least Squares Problems 
2004 

 

 



Intuition: What makes gradient-based optimization 
efficient for deformable registration? 

Source Image Steepest Descent Update Gauss-Newton Update 

Update is not dominated by largest intensity gradients in input image only. 
 Gauss-Newton method on SSD does not suffer from “Local Gradient Bias“. 
[Zikic 2011] 



Deformable Registration by Discrete Optimization 

[Glocker 2008] 

Low-dimensional deformation model (B-Spline FFD) 



Deformable Registration by Discrete Optimization 

Update computation: 
1. For each control point CPi 

 For a discrete number of displacements 
evaluate approximative change in similarity measure 

[Glocker 2008] 

+X -X 

+Y 

-Y 

p q r 

s t u 

v w x 

p q r 

s t u 

v w x 

Low-dimensional deformation model (B-Spline FFD) 

2. Compute approximately optimal combination of the  
pre-computed displacements w.r.t. chosen regularization 
with fast and accurate discrete optimization techniques  



Deformable Registration by Discrete 
Optimization 

Properties:  

– No derivative computation required 

– Similar efficiency for any difference measure 

– Larger/non-local search range for each CP  

 increased capture range 

– Computes only local versions of difference 

measures 

– fast 



that’s almost it 



Intensity-based Deformable Registration  
as Energy Minimization 

Difference Measure between: 
• Target image IT 

• Warped source image Iso 
Examples: 

• Sum of squared differences (SSD) 
• Sum of absolute differences (SAD) 
• Correlation Coefficient (CC) 
• Correlation Ratio (CR) 
• Mutual Information (MI) 

Regularization term: 
• Models the behaviour of 

underlying elastic model 
(internal energy) 

• Incorporates prior knowledge 
• can be required to constrain 

problem 
Examples: 

• Diffusion (1st-order) 
((in-)homogeneous, (an-)isotropic) 

• Curvature/Bend. Energy (2nd-order) 
• Linear Elasticity 

Transformation  
can assumed as element of: 
• Can be modeled as elemet of a 

Hilbert space (L2, Sobolev space) 
or group/manifold 
(group of diffeomorphisms) 

• Has to be parametrized for digital 
representation 
(B-Spline FFDs, DCT, RBFs) 



What is the best registration 
algorithm ? 



How do we validate a 
registration algorithm ? 



Rigid Registration Validation 
• This is easy ! 

• Correspondences for at least 3 noncollinear landmarks 

–  Sufficient to determine the error at any point 

IS 

IT 

Registration 



Rigid Registration Validation 

• Gold standard database available : http://www.insight-
journal.org/rire/index.php 

• Gold standard created by registration using marker-based 
registration 

• Evaluation using 10 clinically relevant points 

• CT-MR and PET-MR registration 

Images from RIRE dataset (T1, T2, PD, CT).  

http://www.insight-journal.org/rire/index.php
http://www.insight-journal.org/rire/index.php
http://www.insight-journal.org/rire/index.php


transformation  

Non-Rigid Registration Validation 

• This is difficult ! 

source image 
target image 



transformation 

Non-Rigid Registration Validation 

• This is difficult : desired     is unknown 



Non-Rigid Registration Validation 

• Manually specify full transform ?  

source image 
target image 

Impossible 



Rigid Registration Validation 

• This is difficult ! 

• Lack of gold standard 

– Unknown desired transformation 

– Manual specification of full transform is 
impossible 

➥ Create synthetic transformations 

➥ Use of surrogate measures 



Synthetic Scenario 

transformed source image Known transformation ‘ source image 



Synthetic Scenario 

Simulated target image source image 

Registration Estimate 
transformation  φ 

Compare 
transformation  φ 

with φ’  
 



Synthetic Scenario 

1. Use of Biomechanical models to obtain 
deformation field 
– Only for intra-subject registration 

– Accuracy of model influences the study 

 

2. Apply a known deformation 
– Images are not independent 

– Bias introduced by the method that 
estimated/created the deformation 

 

 

 



Use of surrogate measures 

• Region-Of-Interest overlap 

• Intensity variance 

• Inverse Consistency Error 

 

• Transitivity Error  

 

 



How good are these measures?  
[Rohlfing 12] 

• Completely Useless Registration Tool (CURT) 



Intensity Similarity 

CURT outperformed the other registration methods when considering: i) RMS image 
difference, ii) NCC image correlation and iii) NMI image similarity !! 



Intensity Similarity 



Region-Of-Interest Overlap 



Region-Of-Interest Overlap 



What is the best registration 
algorithm ? 



What is the best registration 
algorithm ? 



Theorem: For every algorithm there 
is a dataset where it will outperform 
all others ! 



Future 

Combination of metrics: it is inevitable that non of the 
existing metrics can work in the general setting, therefore the answer 
should come from their combination 

Metrics learned from data/examples: 
progress of machine learning have made possible learning correlations 
between data, and therefore define appropriate metrics should be able 
to learned from examples  

Introduction of anatomical constraints: 
anatomy is not taken into account until recently when defining 
appropriate regularization terms, which normally should impose 
deformation consistency that is constrained from the anatomy.  
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