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Image Registration

Spatially align two input images, by computing the spatial transformation,
such that the transformed source image matches the target image

transformed source image source image




Reasons for Deformable Registration

e Subjects move
(alignment of temporal series, patient positioning)

* Subjects change
(longitudinal studies, pre- / post-treatment images)

* Subjects differ
(creation of atlases, segmentation transfer)



Subjects Move
(alignment of temporal series) 2

LY

Animated images from the webpage of
The POPI-model, a Point-validated Pixel-based Breathing Thorax Model
http://www.creatis.insa-lyon.fr/rio/popi-model

Vandemeulebroucke, J., Sarrut, D. and Clarysse, P.. The POPI-model, a point-validated pixel-based breathing thorax model.
In XVth International Conference on the Use of Computers in Radiation Therapy (ICCR), 2007.




Subjects Move
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D. Zikic, S. Sourbron, X. Feng, H. J. Michaely, A. Khamene, N. Navab
: : Automatic Alignment of Renal DCE-MRI Image Series for Improvement
time ™ 200 50 of Quantitative Tracer Kinetic Studies. SPIE Medical Imaging, 2008.
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Application Example:
Non-Linear registration of brain MRI for Segmentation Propagation

[Rohlfing 2004],[Warfield 2004],[Heckemann 2006],[Klein 2009],
[Multi-Atlas Labeling Workshop at MICCAI 2012]
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Intensity-based Image Registration
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target image |, difference image difference image target I,

Compute deformation ¢, such that the transformed source I.o¢ matches target I;
by minimizing the image-based difference measure E.



Some Basic Classes of Registration
Methods

Feature-based Registration Intensity-based Registration
extraction & matching of image-based difference
specific spatial features measure

Linear/Rigid Registration

Deformable Registration




Intensity-based Deformable Registration
as Energy Minimization

¢’ = arg JmmED(]S O ¢> [T)

¢

Transformation ¢

can assumed as element of:

* Can be modeled as elemet of a
Hilbert space (L?, Sobolev space)
or group/manifold
(group of diffeomorphisms)

* Has to be parametrized for digital
representation
(B-Spline FFDs, DCT, RBFs)

Difference Measure between:
* Target image I;

* Warped source image |0
Examples:

* Sum of squared differences (SSD)
Sum of absolute differences (SAD)
Correlation Coefficient (CC)
Correlation Ratio (CR)

Mutual Information (MI)

+ )\ER(Qﬁ) ¢: R — R

IR SR

Regularization term:

* Models the behaviour of
underlying elastic model
(internal energy)

* Incorporates prior knowledge

* can be required to constrain
problem

Examples:
* Diffusion (1st-order)
((in-)homogeneous, (an-)isotropic)
* Curvature/Bend. Energy (2nd-order)
* Linear Elasticity



Deformable Registration: General Framework

warp source image q n sform étk update transformation
I- ---------------------------------- I
e S e — a

Sourcem
Target Image

Optimization

Deformation Model

Energy Model (E) ‘

‘ Difference Measure (Ep) Regularization Term (Eg) ‘




Warp source image by transformation

(regularization)

e Accumulate |
difference image updates

update field transformation

Or, as a movie:
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Deformation models



Deformation Deformation Model
(which theoretical model should govern the process)
Modelling

Elastic Fluid

(regularization term) (deformation space)

o = argmin|uEp(Is © 0. I1) + Mn(0)|

' Deformation Parametrization O
¢€H ¢ (,p) = dp(2) (how to represent a deformation on a computer)
é: R? - R? ¢ :R? x R — R (approximation to the theoretical model)

p 0 Parametric
" e N .
Non-Parametric Free-form Deformations
Dense Finite Element Model

(actually highly parametric) Cosine/Sine/fourier
Transformations

>

Deformation Topology/Structure
> (how to combine deformations)

® Parametrization

& Model

Group Structure
(deformations are
composed)

Vector Space

(deformations are added)




Deformation process

What is the intensity Pull from I (x+u(x)) So interpolate I(x+u(x))
of I5(x,) where x;isa  but x+u(x) is not a by considering
pixel location in the pixel in the source neighboring pixels

deformed image I,? image



Classification of Deformation Models

IoNn expansions

Basis funct
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Physical Models

e Simulation point of view

Displacement Model Force
= Reaction of the [ oftheunderlying [
Model to the Force object/patient
—1
Upir = (Id+ 7AVER) (—7VEp(uy))
* Variety of Forces: M

— Image similarity

— Distances between landmarks
* Variety of Models

— Finite Element

— Mass Spring



Physical Models

/Elastic Body )

\

/Diffusion N

/Viscous Fluid

/Curvature A




Physical Models
V| o
S Result Elasti
@cous fluid flow \ — —
 Navier-Stokes PDE:
w4+ (g + A )V(V-v) +F =0
U mm%ﬁﬁsme Target Result Fluid

Images from [Christensen 94]
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Physical Models
o

. ) Result Elastic
@cous fluid flow \

 Navier-Stokes PDE:
Vv 4+ (g + A )V(V-v)+F =0

Target Result Fluid
Fluid type registration = regularization of Images from [Christensen 94]
updates
(UPDATES = change of displacement =
VELOCITIES )
Challenges

* Avoid folding of field
* No transport in homogeneous regions st b

N
/ “Time progression of the fluid trans-
formation applied to a rectangular grid“




Physical Models
arvature \

e Differential equation

(a) reference (b) template

A’u+F =0.
d
COWCTENN N
i=1 7
Features ET P e— e Ty—

 Does not penalize affine linear
transformations
* Affine pre-registration may not

be necessary

(e) 15 steps elastic (f) 30 steps elastic

k / Images from [Fisher and Modersitzki 04]




Basis Function Expansion




Basis Function Expansion

* Motivated from function interpolation and approximation

theory
 Transformation as a linear basis expansion in R, where

B, is a basis function

up() = Y peBi()

* Few degrees of freedom
— Efficiency
* Implicit smoothness of the field



Basis function expansion + Model

Displacement
For
= Reaction of the  [<—— ro'eltzltI;IdtSIBasis - ro'ectce)d(':cg Basis
Model to the Force Pro) Pro)
—1
Uy =(Id+T17AV,ERr)"" —7V,Ep(ui(p))

* The modelis also projected to the basis
— Smaller system
— May result in a simplification of the problem



Basis function expansion — Shape of B, ‘s

* Same shape of all B, 's VAV
B, ‘s are translated versions of B:

B k (X) = B (X -C k) ,-f"'f // \

— Free-form deformation (FFD) B-Splines T

* Different shape of B, ‘s
— Fourier/Cosine Bases

— RBFs with different parameters
(e.g. Gaussians with different variance)

—k=0
k=1
—k=2
k=3
—k=4




Basis function expansion — Support of B, 's

* Global Support

— Fourier/Cosine Bases \/\/

— Radial basis functions RBFs
(e.g., Thin-plate Splines (TPS)) /\

— Gaussians (in theory)

* Compact Support

— B-Splines
— Some RBFs /\

— Gaussians (in practice)




Basis function expansion — Localization of B, ‘s

localized

global

(no localization)

Trigonometric bases (Fourier/Sine/Cosine bases)

regular grid

irregular
sampling points

Adaptive bases, Thin-plate Splines (TPS)

Non-parametric Approaches: control grid = image grid

.8, L B,

Free-form Deformations (FFD)




Basis Function

Expansion

/Radial Basis Functions
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Basis Function Expansion

@dial basis functions \

u(@) =Y prB([lx — )

Dk . areestimated by solving set

of linear equations

T : basis function center or
landmark

Features

* Global support

 Tend asymptotically to zero

* Positive definite functions

v Closed form solution

v’ Solvable for all possible sets of
landmarks that are not

coplanar J
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Basis function expansion

ﬂin Plate Splines [Bookstein 91]\
Interpolating splines : u(xy) = qx

u(z) = Az + B+ ) ppB(|lx — zx))

A and B define an affine transformation
In2D, B(r) = —r?1nr?

Features
v" Minimize bending energy
v Arbitrary landmark positions
%8 Global support
» Important number of landmarks
to recover local deformations
8 Not topology preserving
8 High computational demands when

\number of landmarks increase /

— Radial basis functions
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Basis function expansion

@bic B-Splines Free-Form \
Deformation (FFD)

 Computer graphics technique for 3D
object modeling [Sederberg 86]

 Parameterization by a grid of control
points

* Objectis deformed by manipulating
the control points

a > B oMo

A dataset is initially embedded in a uniform
lattice of control points: (top) 3D view and

\\ / (bottom) parallel projection. (Images from

[Merhof 07])




Basis function expansion

/Cubic B-Splines Free-Form

Deformation (FFD)

where

and

o

Tensor product of corresponding 1-D
cubic B-splines

u(r) = Z Z B () B (b )iyt +m

po = /0 — |x/0], py =y/d— |y/d],
i=|x/0] -1, j=|y/d] -1

(=0 m=0

\1

ns\%
ol .

Bo(s) = < (1 - s)°

Bi(s) = ?353 — 65 +4) /6

By(s) = (—3s° +3s*+3s+1) /6
Bs(s) = 5°/6

B-spline basis functions

Max displacemt < 0.4 Grid spacing
=» diffeomorphic transformation

L R e
Hareed (2, Y)
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Cubic B-Splines Free-Form Deformation (FFD) - Example




Basis function expansion

/Wavelet: [Amit 94, Wu 00, Geffen 03
u(x) = Z<U(x)a Dok, 1) Pk,

n,k,l

+ZZ ke 1) Vmke

where i = {H, V. D} and for separable
scaling and wavelet functions:

qb'n,k:l —¢n k:( )qbn,l(y)
Zpnkl —¢nk X ¢n,l Yy

() n,1(y)
n,k,l = ¢n k<$>¢n,l<y)
wn,k,l (U k(x)wn,l@/)

Features

1. Local support

» Recover local changes

o /

Scale function
05T
o

Wavvelet function [ 1)

R e
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Basis function expansion teelo| B g

/Aocally affine [Collins 97, Hellier 01,
Pitiot 06, Zhang 06, Commowick 08] 10 out

ulx) = Ap(x R
@) z,;pk () B1o|B1 1

Level 1

1. Partition image to triangles or
tetrahedra ; ;
2. Nodes are parameters of

transformation @

Features Bao |B2,1 [B22 |B2,3 TN
v Efficiency o Level 2 4|2 P20 P27 | T
® Lack of smoothness in regions Bos B [Boxo|Bara| NS

boundaries
B212|B2,13|B2,14| B2 15 TN

\\\‘ ’/// Images from [Buerger 11]
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PART Ii

Similarity Metrics



Deformable Registration: General Framework

Target Image

Optimization

Deformation Model

Energy Model (E) ‘

B

Regularization Term (Eg) ‘




Requirements on similarity measure

* Extremum for correctly aligned images

A

* Smooth, best convex
e Differentiable

* Fast computation




Difference Measures

Volume X Volume Y(g)

'\ 1

SSD = WZ(Xi — i)

Sum of Squared Differences

Volume X Volume Y(¢)

'\ 1

1 N\
SAD = NZ\xi =

Sum of Absolute Differences:
Less sensitive on large intensity
differences than SSD




Normalized Cross Correlaiton
(NCC)

Volume X Volume Y(¢)

X :Mean
\ o, - Standard deviation
N : Number of pixels

nce= L& (62 )-)
[ sty
Normalized Cross Correlation:
Expresses the linear relationship between voxel
intensities in the two volumes




Multi-Modal Registration

* More complex intensity relationship

* Approaches:
— Simulate one modality from the other one
— Apply sophisticated similarity measures



Information Theoretic Approach



Histogram calculation

Bins

@) @ O o

@ OO
O O O

‘ % [®e |°c |0

() (@) O O
@ & |O @ @ O O

4 3 3 6 counts
O O O

1/4 3/16 3/16 3/8 probs

Image Histogram



Joint histogram calculation

Image X Image Y
e|leoe|e®@]|oO o|o| e |®
O] 0 O 10 O| @ O] @
@] @ @ | O O o O] O
@] O ©O10 O @ | ©
t, =1
Overlap ol ol o e t, =1
e |le |@ |O
ol e| o] e
o lo |o |o
ol e| o] e
o |le |®@ |o
o o| e e
@ |0 |o |o

® & O O

Joint Histogram




Joint Histogram

* Histogram for images from different modalities

Target Image Joint Histogram

o

Source Image




Entropy

Shannon Entropy, developed in the 1940s
(communication theory)

H :_2 p; log p,
i
uniform distribution X any other distribution
- maximum entropy Pi - less entropy

(L |\| M e




Mutual Information (M)

MI(X,Y)=H(X)+H((Y)-H(X,Y)

. P, (I, ])
_ i) log—Pe D)
2.2, Py DI0g 7=

« Maximized if X and Y are perfectly aligned
 H(X)and H(Y) help to make the measure more robust

e Maximization of mutual information leads to
minimization of joint entropy



Historical Note

* Minimum Entropy Registration

— Collignon A., Vandermeulen, D., Suetens, P., and Marchal, G. 3D
multi-modality medical image registration using feature space
clustering. CVRMED April 1995.

 Maximum Mutual Information Registration

— Viola, P. and Wells, W. Alignment by maximization of mutual
information. In Proceedings of the 5th International Conference
of Computer Vision, June 20 — 23, 1995.

— Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P,
Marchal G, Automated multi-modality image registration based
on information theory. IPMI June 26, 1995.

— Viola, P. Alignment by maximization of Mutual Information. MIT
PhD Thesis, June 1995.



Improvements to Ml

Normalization of Ml

Density estimation

— Parzen window

— Partial volume distribution
— Uniform volume histogram
— NP windows

Spatial information

Tutorial at MICCAI 2009:
Information theoretic similarity measures for image

registration and segmentation: Maes, Wells, Pluim
http://ubimon.doc.ic.ac.uk/MICCAI09/a1882.html



http://ubimon.doc.ic.ac.uk/MICCAI09/a1882.html

Images Pre-processing Registration Framework

[ | a
Image gradients | Similarity Measure

Entropy images
Multi-resolution
. Attributes
. SIFT

g \ Optimization




Images Pre-processing Registration Framework

[ | a
Image gradients | Similarity Measure

Entropy images
Multi-resolution
. Attributes
. SIFT

g \ Optimization




Multi-Resolution Registration

* Perform registration on multiple resolutions
1. Smooth
2. Downsample
* Advantages:
— Speed: down-sampled images
— Convergence: smoother cost func




Images Pre-processing Registration Framework

[ | a
Image gradients | Similarity Measure

Entropy images
Multi-resolution
. Attributes
. SIFT

g \ Optimization




Images Pre-processing Registration Framework

[ | a
Image gradients | Similarity Measure

Entropy images
Phase
Multi-resolution

. Attribute vectors

M- k Optimization




SIFT

Scale Invariant Feature Transform
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Gradient orientation histogram

Lowe, Distinctive image features from scale-invariant keypoints, 1JCV, 2004
Tola et al., A Fast Local Descriptor for Dense Matching
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SIFT features

xn_/r\ﬁ
N BRI

NEI P 4 2Xx2x8=32
S G [ S I —I—r ’ Adx4x8=128
A x|* e M4
e B 2N D " / |5

U DN

Image gradients Keypoint descriptor

Matt’s work for 3D SIFT



PART IlI

Optimization Methods



Deformable Registration: General Framework

Target Image

Optimization

Deformation Model

Energy Model (E) ‘

‘ Difference Measure (Ep) Regularization Term (Eg) ‘




Structure of General Energy Formulation

E(p) = Ep(Ir, Is(¢)) + AER(9)

B - | el dx + [ Tlex(w] 4o

Depends on deformation through image I
ep(u) =ep(Ir, Iso (Id+ u))
- Non-linearity

* In many cases, the error term for the regularization is

linear in the displacement: ex(u) = (Lu)*Lu = u*L*Lu

* the linear operator is mostly a differential operator

(e.g. L=V, L=4, ...)

Non-linearity prohibits closed-form solutions

— Local optimization problem
— Solutions = local optima

— Methods: Iterative (accumulation of updates)



Registration

lterative Accumulation of Displacement Updates



Warp source image by transformation

(regularization)

source (warped)

- Accumulate | -
difference image TR N updates |

update field transformation



General Update Structure:
Smoothed noisy update estimate

v o | K |(|VEb(6) + \VER(9) )

Smoothing operator, e.g. Gaussian

Depends on:

* Deformation space (L2, Sobolev space, ...)
* Parametrization (B-Spline FFD, ...)

e Optimization scheme




Registration

Iterative Accumulation of SMOOTHED Displacement Updates



How to determine the updates u,?

- different optimization schmes

1. Gradient-based Optimization
v = —7 some_function (VE(u))

2. Gradient-free/Discrete Optimization

v = some_other_function (E p, Ep, u)



Steepest Gradient Descent

* Energy: E(¢) = Ep(Ir,Is(9)) + AER(0)

Starting with initial ¢,, repeat until convergence:

U — v E ( ¢> // compute update based on gradient of energy

¢

¢ + TU // apply the update

Only the derivative of the energy w.r.t the deformation is required:

VE(¢) = VEp(¢) + AVER(9)

—> derivative of difference measure
—> derivative of regularization term




EXAMPLE: Steepest Gradient Descent
Derivative of the Regularization Term

General formulation of the derivative for a regularization term with a quadratic form:

* General regularization term: ER(u) = / ||€R(U)|| dr
e Assume: N
— Squared L2 norm:

1 , 1
Prlu) = 5 | e(w) = S{etu).e(w) > Eg(u) = =(u, L* Lu)

— Error term is linear in u:
(er(u),er(u)) = (Lu, Lu) = (u, L*L up

dER(U,)
du

= L*Lu

 Then, the derivative reads:

For diffusion regularization, we get:

=5 [, 2 Ivutora: L = V= A




EXAMPLE: Steepest Gradient Descent ¢ =1d +u
Derivative of the Difference Measure

General formulation of the derivative of the difference measure:

OEp(r,Is(¢)) _ OEp(r,Is(¢)) 0ls(9)
ou \ a[S;{(Cb) L ol ,
W(lr, Is(¢)) (Vis)(¢) 1d

Point-wise evaluation at xeQ: point-wise rescacling of the warped gradient of /,

8ED(I§ZL15(¢)) () = WIr Is(@)) (=) (VIs)($(x))

.

cRd

For the SSD we get:

Bo = 5 [(Ir()~Is(o(@)*de My S22 — (1 — 14(6)) VIs(0)

Q




Summary: Steepest Gradient Descent

Starting with initial ¢,, repeat until convergence:

_ v E ( ¢) // compute update based on gradient of energy

= —VEp(¢) — AVER(9)
¢ p— ¢ —|— TV // apply the update

U



Gradient-based Optimization Methods

Method Update Rule Comment

+ Simple implementation
_1 . .
Steepest Descent v=—71d"" VE + Only gradient required |
— Numerical instable: requires small time
steps = many iterations needed

+ Numerically stable also for large time steps

—1 + Linear operator determined by regularization
v=—7 (Id+7AVER) VE

- difference measure easily exchangable
— Poor convergence speed

PDE-inspired

Semi-implicit Discretization

Numarically stable also for large time steps
T -1 Good convergence speed
Gau B_ Newton V= —T (Je J€> VE — Linear operator depends on both,
the regularization and the difference term
— J, must be sparse/small for efficient treatment

- _ A mixture of St t Gradient D t
Levenberg o — ()\Id n J;—Je> 1 VE A mixture of Steepest Gradient Descen
Marquardt
L-BFGS & v=—7 P\ VE £ Requre oy gadint evlutions
. . _ . - C d d ime-
Conjugate Gradient P~ = function(VE;7) requirements s o actimerstep
L -1 Most general formulation of the
Preconditioned v=-T P Vb above. Properties depend heavily on
With P approximating the Hessian of E, e.g.: choice of P.

Gradient Descent * Jacobi preconditioning
(Quasi-Newton) * For def. Registration: [Zikic 2010]

“Finding a good preconditioner (...) is often

viewed as a combination of art and science.”
Y. Saad, Iterative Methods for Sparse Linear Systems




General Optimization References

BOOK:

Numerical Optimization

Jorge Nocedal and Stephen J. Wright
Springer Series in Operations Research

Techreport:
Madsen, K., Nielsen, H. and Tingleff, O.

Methods for Non-linear Least Squares Problems
2004



Intuition: What makes gradient-based optimization
efficient for deformable registration?

Source Image Steepest Descent Update Gauss-Newton Update

Is VE (JTJ) 'VE

Update is not dominated by largest intensity gradients in input image only.
- Gauss-Newton method on SSD does not suffer from “Local Gradient Bias”.
[Zikic 2011]




Deformable Registration by Discrete Optimization

Low-dimensional deformation model (B-Spline FFD)

[Glocker 2008]



Deformable Registration by Discrete Optimization

Low-dimensional deformation model (B-Spline FFD)

Update computation:

1. For each control point CP,

lp
For a discrete number of displacements d
evaluate approximative change in similarity measure

Villy) = [ () (Fr(a) = s+ d))° da

~
or any other local image metric

2. Compute approximately optimal combination of the
pre-computed displacements w.r.t. chosen regularization
with fast and accurate discrete optimization techniques

Eet(l) = Z V;?(lp) + Z %q(l'palq)

peEG (p.q

[Glocker 2008]



Deformable Registration by Discrete
Optimization

Properties:

— No derivative computation required
— Similar efficiency for any difference measure

— Larger/non-local search range for each CP

- increased capture range

— Computes only local versions of difference

measures

— fast



that’s almost it



Intensity-based Deformable Registration
as Energy Minimization

¢’ = arg JmmED(]S O ¢> [T)

¢

Transformation ¢

can assumed as element of:

* Can be modeled as elemet of a
Hilbert space (L?, Sobolev space)
or group/manifold
(group of diffeomorphisms)

* Has to be parametrized for digital
representation
(B-Spline FFDs, DCT, RBFs)

Difference Measure between:
* Target image I;

* Warped source image |0
Examples:

* Sum of squared differences (SSD)
Sum of absolute differences (SAD)
Correlation Coefficient (CC)
Correlation Ratio (CR)

Mutual Information (MI)

+ )\ER(Qﬁ) ¢: R — R

IR SR

Regularization term:

* Models the behaviour of
underlying elastic model
(internal energy)

* Incorporates prior knowledge

* can be required to constrain
problem

Examples:
* Diffusion (1st-order)
((in-)homogeneous, (an-)isotropic)
* Curvature/Bend. Energy (2nd-order)
* Linear Elasticity



What is gistration
?



How do we validate a
registration algorithm ?



Rigid Registration Validation

 Thisis easy !

Correspondences for at least 3 noncollinear landmarks

— Sufficient to determine the error at any point

O
s
0O
] Registration
It O
o O



Rigid Registration Validation

Gold standard database available : http://www.insight-
journal.org/rire/index.php

Gold standard created by registration using marker-based
registration

Evaluation using 10 clinically relevant points
CT-MR and PET-MR registration

Images from RIRE dataset (T1, T2, PD, CT).


http://www.insight-journal.org/rire/index.php
http://www.insight-journal.org/rire/index.php
http://www.insight-journal.org/rire/index.php

Non-Rigid Registration Validation

 This is difficult !

source/image

(transformation ¢

target image




Non-Rigid Registration Validation

* This is difficult : desired ¢ is unknown




Non-Rigid Registration Validation

 Manually specify full transform ?

source image target image




Rigid Registration Validation

e This is difficult !
* Lack of gold standard

— Unknown desired transformation

— Manual specification of full transform is
impossible

w Create synthetic transformations
w Use of surrogate measures



Synthetic Scenario

\ / e e e e L N\ /
\\- y ARAR RS RARRRARNARARN fannnumannunanaaNARANARRRRRRRRAA \\ ¢

source image Known transformation ¢ 1| transformed source image




Synthetic Scenario

Compare

transformation ¢
with ¢’

source image Simulated target image




Synthetic Scenario

1. Use of Biomechanical models to obtain
deformation field

— Only for intra-subject registration
— Accuracy of model influences the study

2. Apply a known deformation

— Images are not independent

— Bias introduced by the method that
estimated/created the deformation



Use of surrogate measures

Region-Of-Interest overlap
ntensity variance

nverse Consistency Error

¢sT © prs = 1
Transitivity Error

¢AB © PBc © Poa =1



How good are these measures?
[Rohlfing 12]

 Completely Useless Registration Tool (CURT)
NS _ﬁ_f—:—_NT

R

>

AS nr

Moving Image



Intensity Similarity

Moving Images after Registration

Fixed Image Affine FFD SyN CURT

Difference

CURT outperformed the other registration methods when considering: i) RMS image
difference, ii) NCC image correlation and iii) NMI image similarity !!



Intensity Similarity

Affine FFD SyN CURT
Average




Region-Of-Interest Overlap

Moving Images after Registration

Fixed Image

Jaccard Index

GM WM
Tissue

CURT




Jaccard Overlap, J

Region-Of-Interest Overlap

Moving Images after Registration
Fived Tmaoe Affhne FFD QuN CTIRT

1
C URT Cerebral-White-Matter
Cerebral-Cortex
Lateral-Ventricle
better Inf-Lateral-Ventricle
Cerebellum-White-Matter
Cerebellum-Cortex
Thalamus

0.8}

Pallidum
3rd Ventricle
4th Ventricle

Brain Stem
Hippocampus
Amygdala

<
Lo3]
T

o
-
T

Caudate +
Putamen -

Accumbens
CSF X

Jaccard Overlap, J

02} -

+

4
-

0 ' . ' —

100 1000 10000 100000 100 1000 10000 100000

Gold Standard Region Size in Puxels 4 » Gold Standard Rilon Size in Pixels, V




What is the best registration
algorithm ?



What is gistration
?



Theorem: For every algorithm there
is a dataset where it will outperform
all others |



Future

Combination of metrics: itis inevitable that non of the

existing metrics can work in the general setting, therefore the answer
should come from their combination

Metrics learned from data/examples:

progress of machine learning have made possible learning correlations
between data, and therefore define appropriate metrics should be able
to learned from examples

Introduction of anatomical constraints:

anatomy is not taken into account until recently when defining
appropriate regularization terms, which normally should impose
deformation consistency that is constrained from the anatomy.
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