Segmentation and Analysis of Stroke Images

Polina Golland

MIT Computer Science and Artificial Intelligence Laboratory

Joint work with Adrian Dalca Ramesh Sridharan Natalia Rost, MGH

Stroke and Leukoaraiosis

Problem

- Segment white matter hyperintensity in T2-FLAIR MRI
 - Leukoaraiosis vs. chronic stroke
 - Analyze with clinical and genetic information
- What we know
 - Leukoaraiosis occurs roughly symmetrically
 - Both leukoaraiosis and chronic stroke appear hyperintense

Outline

- Our approach
 - Generative model
 - Algorithm
- Results
- Population analysis teaser

Our Approach

- Similar to EM-segmentation
- PCA model on leukoaraiosis segmentation maps
 - Learn from a training set
- If not leukoaraiosis either stroke or white matter
 - Estimate from the input image

Our Model

• Three tissue classes: Leukoaraiosis, Stroke, Healthy C_x is a 3-vector with only one 1

Given the tissue class, intensity is Gaussian:

 $I_x \mid C_x(c) = 1 \sim \mathcal{N}(\mu_c, \sigma_c)$ where c is one of $\{L, S, H\}$

- Generative process:
 - Sample leukoaraiosis from a prior model
 - If not leukoaraiosis, either stroke of healthy
 - Make sure it's all "smooth"

Spatial Priors

Tissue priors

$$\pi_{x}=[M_{x}(\alpha) \quad (1-M_{x}(\alpha))\beta_{x} \quad (1-M_{x}(\alpha))(1-\beta_{x})]$$

- Spatial prior model on M_x and β_{x} :
 - Leukoaraiosis prior: PCA

$$M_x = M_0 + \Sigma_k \alpha_k M_k$$
 where $\alpha \sim \mathcal{N}(\mu_{shape}, \Sigma_{shape})$

Tissue smoothness: Markov Random Field

$$P(C|\alpha,\beta) \sim \Pi_c \, \pi_x^{C(c)} \, \Pi_y \, \exp(C_x' A \, C_y)$$

Optimization

Approximate EM

Replace integration over shape parameters α with a weighted projection onto the space of the eighenvectors

Output:

- In each voxel, posterior probability for each tissue class
- Parameters of the model:
 - » shape parameters α
 - » intensity parameters for each class μ, 6

Iterative algorithm

- Given the current guess (posterior probabilities)
 - » project onto the PCA space => estimate α
 - » estimate image intensity parameters μ , σ
- Run mean-field on the MRFs
 - » estimate posterior probabilities

Registration

- Original version:
 - Register T2-FLAIR to T1 anatomical
 - Register T1 to the atlas
- Current version:
 - Make a T2-FLAIR atlas
 - Register T2-FLAIR to T2-FLAIR atlas
- Current and future work:
 - Super-resolution to help registration

Data

- Close to 1,000 scans of stroke patients
- Training set: 40 of the patients whose scans registered well with the atlas
- Test set: 200 different patients from this data set
- For each patient, we obtain
 - Sagittal T1 scan 1mx1mx7m
 - Axial T2 FLAIR scan 1mx1mx7m
 - Leukoaraiosis was manually segmented in these images, enabling training and validation

Example Segmentations

Quantitative Evaluation

Projections

Iterations

Failure Cases

- Problems with registration
- A lot of white matter hyperintensity

Population Analysis

Population Analysis (cont'd)

Thanks

- Adrian Dalca, Ramesh Sridharan
- Our clinical collaborators at MGH: Natalia Rost
- Support:
 - NAMIC: National Alliance for Medical Image Analysis
 - NAC: Neuroimaging Analysis Center

Conclusions

- Accurate model-based segmentation of white matter hyperintensities
 - PCA model captures leukoaraiosis distribution properties
 - MRF regularizes stroke shape
 - Intensity model for each class
- Many clinical applications: stroke, MS, aging, etc.
- Current and future research
 - Registration
 - Multi-site analysis
 - Joint analysis with genetics and clinical information