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Shape 

The word “shape” is very commonly used in 
everyday language, usually referring to the 
geometry of an object. 

  

School performance test 



Concept of shape is not new 



Shape and Human Vision 
“Our Visual world contains a vast arrangement of objects, yet we 
are amazingly robust in recognizing them. This includes objects 
projected from novel viewpoints, or partially occluded objects. 
We are even able to describe totally unfamiliar objects, or to 
recognize unexpected ones out of context.” 

What aspect of the 
geometry should be 
computed to allow 
robust recognition?  
 
Formal Definition? 
Theory of Shape? 

Kimia, Tannenbaum, Zucker, IJCV 1995 



Shape Classification 



Application Domains 



Shape Statistics: Variability 

link 

http://www.sciencemuseum.org.uk/broughttolife.aspx


Shape Statistics: Average? Variability? 



Shape Metamorphosis 

http://www.artnews.com/2013/02/21/chocolate-self-portraits-by-janine-antoni-and-dieter-rot/  

Janine Antoni: Two self portrait busts, 1993  (SFMOMA) 
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Shape Metamorphosis 

http://www.artnews.com/2013/02/21/chocolate-self-portraits-by-janine-antoni-and-dieter-rot/  

Janine Antoni, Lick and Lather, 1993-1994 (SFMOMA) 

Two self-portrait busts: one chocolate and one soap. 
Defacing:  Washing soap head in bathtub -> erosion, fetal features, like MCF 
 Licking chocolate head -> altering features 
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Shape Metamorphosis 

http://www.artnews.com/2013/02/21/chocolate-self-portraits-by-janine-antoni-and-dieter-rot/  

Janine Antoni, Lick and Lather, 1993-1994 (SFMOMA); 
 

Two self-portrait busts: one chocolate and one soap. 
Defacing:  Washing soap head in bathtub -> erosion, fetal features 
 Licking chocolate head -> altering features 
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Shape Space 

A shape is a point in a high-dimensional, 
nonlinear shape space. 



Pedagogy: Goals 

• Terms 
– “Shape Representations”, “Shape Analysis”, “Shape Space” 
– “Kendal Shape Space” 
– “SSM”, “PCA”, “PGA”, “ASM”, “AAM” 
– “Diffeomorphisms”, “Ambient Space” 

• Concepts 
– Correspondences/Landmarks in 2-D and 3-D 
– Generation of Statistical Shape Models 
– Use of SSMs for Deformable Model Segmentation 
– Correspondence-Free Shape Analysis 
– Statistics of Deformations of Ambient Space: Deformetrics 

 



Contents 

• What is Shape?  
• Geometry Representations 
• Kendall Shape Space 

– Statistical Shape Modeling (SSM) 
– Correspondences 
– Active Shape & Appearance Models (ASM, AAM) 

• Shape Statistics via Deformations 
– Correspondence-free Mapping & Stats via “currents” 
– Ambient Space Deformations via Diffeomorphisms 
– Statistics of Deformations of Ambient Space 

 

What-is-Shape.pptx
Geometric-Representations.pptx
SSM.pptx
Correspondence.pptx
ASM.pptx
Currents.pptx
Currents.pptx
Currents.pptx
Currents.pptx
Deformations.pptx
Deformations.pptx
Deformations.pptx
Stats-Deformations.pptx


Contents 

• What is Shape?  
• Geometry Representations 
• Kendall Shape Space 

– Statistical Shape Modeling (SSM) 
– Correspondences 
– Active Shape & Appearance Models (ASM, AAM) 

• Shape Statistics via Deformations 
– Correspondence-free Mapping & Stats via “currents” 
– Ambient Space Deformations via Diffeomorphisms 
– Statistics of Deformations of Ambient Space 

 



What is Shape? 

Shape is the geometry of an object modulo 
position, orientation, and size. 

Kendall ‘77, Dryden, Mardia 
From: Stegmann and Gomez, [Kendall, 1977] 



Shape Definition 

Dryden/Mardia, 
(Kendall 1977):  
 
Shape is all the 
geometrical 
information that 
remains when 
location, scale and 
rotational effects are 
filtered out from an 
object. 

Image: Sebastian and Kimia 2005  



Shape Equivalences 

Two geometry representations, 𝑥1, 𝑥2, are 
equivalent if they are just a translation, rotation, 
scaling of each other: 

 

where λ is a scaling, R is a rotation, and ν is a 
translation. 

In notation: 𝑥1 ~ 𝑥2 



Equivalence Classes 

The relationship 𝑥1 ~ 𝑥2 is an equivalence relationship: 

• Reflexive: 𝑥1 ~ 𝑥1  

• Symmetric: 𝑥1 ~ 𝑥2 implies 𝑥2 ~ 𝑥1  

• Transitive: 𝑥1 ~ 𝑥2 and 𝑥2 ~ 𝑥3 imply 𝑥1 ~ 𝑥3 



Equivalence Classes 

The relationship 𝑥1 ~ 𝑥2 is an equivalence relationship: 

• Reflexive: 𝑥1 ~ 𝑥1  

• Symmetric: 𝑥1 ~ 𝑥2 implies 𝑥2 ~ 𝑥1  

• Transitive: 𝑥1 ~ 𝑥2 and 𝑥2 ~ 𝑥3 imply 𝑥1 ~ 𝑥3 
 

• We call the set of all equivalent geometries to x the 
equivalence class of 𝑥: 

𝑥 = {𝑦 ∶ 𝑦 ~ 𝑥} 

 



Equivalence Classes 

The relationship 𝑥1 ~ 𝑥2 is an equivalence relationship: 

• Reflexive: 𝑥1 ~ 𝑥1  

• Symmetric: 𝑥1 ~ 𝑥2 implies 𝑥2 ~ 𝑥1  

• Transitive: 𝑥1 ~ 𝑥2 and 𝑥2 ~ 𝑥3 imply 𝑥1 ~ 𝑥3 
 

• We call the set of all equivalent geometries to 𝑥 the 
equivalence class of 𝑥: 

𝑥 = {𝑦 ∶ 𝑦 ~ 𝑥} 
 

• The set of all equivalence classes is our shape space. 



Kendall’s Shape Space 

• Define object with 𝑘 points. 

• Represent as a vector in ℝ2𝑘. 

• Remove translation, rotation, 
and scale. 

• End up with complex 
projective space, ℂℙ𝑘−2. 



Constructing Kendall’s Shape Space 

• Consider planar landmarks to be points in the 
complex plane. 

• An object is then a point 𝑧1, 𝑧2 , ⋯ , 𝑧𝑘 ∈ ℂ𝑘. 

• Removing translation leaves us with ℂ𝑘−1. 

• How to remove scaling and rotation? 



Scaling and Rotation in the Complex Plane 

Recall a complex number can be 

written as 𝑧 =  𝑟𝑒𝑖𝜙, with 
modulus 𝑟 and argument 𝜙. 

Complex Multiplication: 

𝑠𝑒𝑖𝜃 ∗ 𝑟𝑒𝑖𝜙 = (𝑠𝑟)𝑒𝑖(𝜃+𝜙) 

Multiplication of 𝑧 by a complex number 𝑠𝑒𝑖𝜃 is 
equivalent to scaling by 𝑠 and rotation by 𝜃. 



Removing Scale and Rotation 

Multiplying a centered point set,   
𝒛 =  𝑧1, 𝑧2, ⋯ , 𝑧𝑘−1 , by a constant 𝑤 ∈  ℂ, just 
rotates and scales it. 

Thus the shape of 𝒛 is an equivalence class: 

[𝒛]  =  {(𝑤𝑧1, 𝑤𝑧2, ⋯ ,𝑤𝑧𝑘−1) ∶  ∀𝑤 ∈ ℂ} 

This gives complex projective space ℂℙ𝑘−2. 

(Note: centering 1DOF, rotation 2DOF (1 in complex space) → ℂℙ𝑘−2) 



Non-Euclidean Shape Space 

• Shape Space = complex projective space 
ℂℙ𝑘−2. 

• Shape distance between two objects 𝑧, 𝑤: 



Shape Distances … 

Ian Dryden: Dryden-Stat-Shape-analysis-2000.pdf 



The Problem of Size and Shape 

Dryden/Mardia (Kendall 
1977): (Sometimes we are 
also interested in retaining 
scale information as well as 
shape) → 
 
Size-and-Shape is all the 
geometrical information that 
remains when location and 
rotational effects are filtered 
out from an object. 



Shape Analysis 

A shape is a point in a high-dimensional, 
nonlinear shape space. 



Shape Analysis 

A metric space structure provides a comparison 
between two shapes. 



Shape Space for Object Class 
• Linear methods are nice, 

but shape space is curved 
surface: Hyper sphere. 

• Standard statistics (𝜇, Σ) 
not build for 
hyperspheres. 

• Tangent-space 
projection: Modify shape 
vectors to form hyper 
plane.  

• Use Euclidean distance in 
this plane rather than 
true geodesic distance. 

 

• k landmarks in n Euclidean 
dimensions: 𝑘𝑛-dim space 

• Procrustes alignment: Shape vectors 
of length dimensionality 𝑘𝑛 
normalized for size → 𝐿2 norm 

• Vectors lie on subpart of a 𝒌𝒏-
dimensional hyper sphere 

Stegmann and Gomez, 2002 



Structure of Shape Space 

Kendal Shape Space: Part 
of Hypersphere, curved 
manifold 

Shape Space 
ℝ2𝑚 

Assumption SSM: 
Multivariate Gaussian 
distribution, linear stats 



Shape Space: Tangent-Space Projection 

Stegmann and Gomez, 2002 

• Project shape vectors 
to tangent space. 

• Apply standard 
statistics (𝜇, Σ). 

• Shown to be good 
approximation (not 
much difference) in 
case of small shape 
variability. 
 



Shape Space: Tangent-Space Projection 

Calculate tangent space, projection to tangent space, 
linear statistics.  
 



Where to Learn More 
• Pioneers: Fred Bookstein and David Kendall. 

• Bookstein (1991, Cambridge). 

• Kendall, Barden and Carne, Shape and Shape Theory, Wiley, 1999. 

• Dryden and Mardia, Statistical Shape Analysis, Wiley, 1998. 

• Small, The Statistical Theory of Shape, Springer-Verlag, 1996. 

• Grenander, HISTORY AS POINTS AND LINES, 1998-2003 

• Lele and Richstmeier (2001, Chapman and Hall). 

• Krim and Yezzi, Statistics and Analysis of Shapes, Birkhauser, 2006. 



Given two points on the hypersphere, we can draw the 
plane containing these points and the origin. 

DF 

r 

DP 

r 

Procrustes Distances is r. 

DP = 2 sin ( r/2) 

DF = sin r.   

• These are all monotonic in r.  
So the same choice of rotation 
minimizes all three. 

• DF is easy to compute, others 
are easy to compute from DF.   



Why Procrustes Distance? 

• Procrustes distance is most natural.  Our intuition is 
that given two objects, we can produce a sequence 
of intermediate objects on a ‘straight line’ between 
them, so the distance between the two objects is the 
sum of the distances between intermediate objects.  
This requires a geodesic. 

 



Tangent Space 

• Can compute a hyperplane tangent to the 
hypersphere at a point in preshape space. 

• Project all points onto that plane. 
• All distances Euclidean.  Average shape easy 

to find. 
• This is reasonable when all shapes similar. 
• In this case, all distances are similar too. 

– Note that when r is small, r, 2sin(r /2), sin(r) are 
all similar. 



Contents 

• What is Shape?  
• Geometry Representations 
• Kendall Shape Space 

– Statistical Shape Modeling (SSM) 
– Correspondences 
– Active Shape & Appearance Models (ASM, AAM) 

• Shape Statistics via Deformations 
– Correspondence-free Mapping & Stats via “currents” 
– Ambient Space Deformations via Diffeomorphisms 
– Statistics of Deformations of Ambient Space 

 



Geometry Representations 



Geometry Representations 

• Landmarks (key identifiable points) 

• Boundary models (points, curves, surfaces, 
level sets) 

• Interior models (medial, solid mesh) 

• Transformation models (splines, 
diffeomorphisms) 



Boundary via Landmarks 

Stegmann and Gomez, 2002 



Boundary versus Skeleton 

Shape Representation:  

– Contour / Boundary / 
Surface  

– Skeleton (medial model) 

radius 

skeleton shape 



Skeleton Shape Representation 

Sensitivity of curve matching to 
spatial arrangement and how shock 
graph matching avoids the problem.  

Sebastian and Kimia, Signal Processing, 2005 

Shock Grammar,  Symmetry 
Maps and Transforms For 
Perceptual Grouping and 
Object Recognition,  
Benjamin B. Kimia, Brown 
 
 



Shock Graph: Shape Transformation 

Matching dog to cat via shock graph editing 

Sebastian and Kimia, Signal Processing, 2005 

Invariance of shock 
graph to flexibly 
deformable objects. 



Spherical Harmonics (SPHARM) 
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1. Extract voxel surface 
2. Area preserving parameterization 
3. First order ellipsoid alignment 
4. Fit SPHARM to coordinates 
5. Sample parameterization and 

reconstruct object 
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Szekely, Kelemen, Brechbuehler, Gerig, MedIA 1996 



Medial Axis / Skeletal Representation: 
Intrinsic Shape Model 

S-rep: Prostate s-rep and 
implied boundary: Pizer et al. 
(discrete) 

 
 
CM-rep: Yushkevich 
(continuous, parametric) 
Yushkevich et al., TMI 2006 

Gorczowski , Pizer, Gerig et al., T-
PAMI 2010, Stats on deformations vs. 
thickness 



3D Shape Representations 

SPHARM 

Boundary, fine 

scale, parametric 

PDM 

Boundary, fine 

scale, sampled 
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Sun et al. 2007, IEEE TMI 



Level-Set Formulation: Shapes as 
signed distance functions 

• Embed shape contour 
as 0-level set 

• Calculate Euclidean 
distance transform. 

• Contour represented as 
image with embedded 
set of signed distance 
functions. 

Leventon, Grimson, Faugeras, CVPR 2000 



Volumetric Laplace Spectrum 

• “Shape DNA”: Fingerprint, 
Signature 

• Laplace-Beltrami Spectrum 

• Global Shape Descriptor 

• Voxel object: no registration, 
no mapping, no re-meshing 

Reuter, Niethammer, Bouix, MICCAI 2007 



Transformation Models 



Contents 

• What is Shape?  
• Geometry Representations 
• Kendall Shape Space 

– Statistical Shape Modeling (SSM) 
– Correspondences 
– Active Shape & Appearance Models (ASM, AAM) 

• Shape Statistics via Deformations 
– Correspondence-free Mapping & Stats via “currents” 
– Ambient Space Deformations via Diffeomorphisms 
– Statistics of Deformations of Ambient Space 

 



Statistical Shape Analysis  

• What is the mean of these shapes? 

 

• Quantify variability 

• Quantify individuals relative to population 

• Hypothesis testing 

• Regression 



Modelling Shape 

• Define each example using points 

• Each (aligned) example is a vector 

1 

2 

3 

4 

5 

6 

xi = {xi1 , yi1 , xi2 , yi2 …xin , yin} 

Cootes, Taylor 1993 



SSM: Point Distribution Model 

Example of shape configuration (left) and the 
configuration matrix (right) for a set of hand shapes. 

Cootes, Taylor 1993 



Modelling Shape Variability 

Observation/Assumption: Points in shape 
population tend to move in correlated ways. 

x1 

x2 

b1 

xi 

Cootes, Taylor 1993 

𝒙  



Shape Alignment 

Stegmann and Gomez, 2002 



SSM and Shape Space 

iS

Shape Space 
ℝ2𝑚 



SSM and Shape Space: Correlation 

iS

Shape Space 
ℝ2𝑚 



Capturing the statistics of a set of aligned shapes 

• Find mean shape 

 

• Find deviations from the mean 
shape 

 

• Find covariance matrix 

 

• Find eigenvalues/vectors  of S 
 

• Modes of variation defined by 
eigenvectors 
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Hand Model 

Modes of shape variation 

b1b 2bb1 b2 b 

Courtesy of Chris Taylor, Cootes & Taylor 1992 



Landmark Variability & Correlation 
Matrix 

Stegmann and Gomez, 2002 



Description in the Shape Space 

• The modes of variation of the points of the shape 
are described by the eigenvectors of S:  

 

 

• Each shape is described     
 by its weight vector b. 

 

• The eigenvectors corresponding to the largest 
eigenvalue describe the most significant modes of 
variation in the training data. 

)( xxPb

Pbxx

Pbxx

T 







Shape Eigenbasis 



Synthetic Shapes: Translation 

8*8 Correlation Matrix  
[(x1,y1),(x2,y2),…,x4,y4)] 

Input: Scaling/Translation 

PC 1 

PC 2 

eigenvalues 



Synthetic Shapes: Translation 

8*8 Correlation Matrix  
[(x1,y1),(x2,y2),…,x4,y4)] 

Input: Scaling/Translation 

eigenvalues 

PC 1 

PC 2 



Synthetic Shape: Rotation? 

8*8 Correlation Matrix  
[(x1,y1),(x2,y2),…,x4,y4)]. 

Input: Rotation of 
square by 80 deg. 

eigenvalues 

PC 1 

PC 2 



Synthetic Shape: Rotation (80deg) 

PC 1 

PC 2 

PC 1 

PC 2 

PCA  in ℝ𝑛generates linear subspaces 𝑉𝑘 that maximize the variance of the projected data. 



Statistics in Shape Space 

-3σ +3σ mean 

1 

2 

3 
m

od
e 

PCA modes visualization 

• Manual/automatic correspondences 

• Gaussian models 

• PCA for dimensionality in shape space 

Shape Space 
ℝ2𝑚 PCA 1 



Summary Concept 

Compression/Feature selection: Project high dimensional 
measures into low-dimensional space of largest variability, few 
features → Statistics 



Example: Corpus Callosum Study 



Boundary PCA 

Eigenvalues:  
95% of deformation energy is in the first 10 
principal eigenmodes, and the first 2 
represent 65% of the variation. 
 

PCA 1 

PCA 2 

PCA 3 



PCA Shape Space: Corpus Callosum Study  
PC 1,2 

PC 3,4 

Mean CC shapes: 6mo, 12mo, 24mo 

1040 infant CC shapes 

ACE-IBIS Autism Study, UNC J. Piven 



Generalizing PCA: Principal Geodesic 
Analysis 

Fletcher et al., IEEE TMI 2004 



The Exponential Map 
• We represent shapes as points on a 

manifold, rather than as points in 
Euclidean space.  

• Log map: Function that computes a 
geodesic from two points on the 
manifold, representing the shortest 
path on the manifold between two 
points: 𝑑 𝑥, 𝑦 = 𝐿𝑜𝑔𝑥 𝑦 =
log (𝑥−1𝑦) . 

• Exponential map: Function that 
computes points on the manifold 
from a base point and a vector in 
the tangent space: 𝐸𝑥𝑝𝑥 𝑣 =
𝑥𝑒𝑥𝑝 𝑦 . 



Intrinsic Means (Fréchet) 

The intrinsic mean of a collection of points 
𝑥1⋯𝑥𝑁  in a metric space 𝑀 is 

 

 

 

where 𝑑(. , . ) denotes distance in 𝑀. 



PGA 

• PGA is the natural generalization of PCA to a manifold 
space.  

• Covariance matrix is constructed with the tangent 
vectors at the Fréchet mean (vectors 𝑣𝑖). 

• Fréchet mean: No closed form solution in this space, 
iterative procedure: 

 

 



Computing Means 

Fletcher et al., IEEE TMI 2004 



Computing Means 
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Computing Means 
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Computing Means 
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Computing Means 
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Computing Means 

Fletcher et al., IEEE TMI 2004 



Computing Means 

Fletcher et al., IEEE TMI 2004 



Computing Means 

Fletcher et al., IEEE TMI 2004 



Computing Means 

Fletcher et al., IEEE TMI 2004 



Comparison PCA-PGA 



Comparison PCA-PGA 

PCA with 
Procrustes 

PGA 

Discussion:  
• Qualitatively slightly different but no obvious major differences. 
• Details are in the math: PGA guarantees by definition rigid invariance (rotation, scale), 

PCA after Procrustes shows slight amount of scale differences but none for rotation. 



Non Unimodal Shape Space: Gaussian 
Mixture Model 

A Mixture Model for Representing Shape Variation, Cootes et al., IVC 1999 



Towards Robust Statistics on Shapes 

Input Data: 18 Hand Outlines 
(Cootes & Taylor) 

Outliers: random ellipses 

Sarang Joshi, Utah 

Example: Complex Projective Kendal Shape Space 



Towards Robust Statistics on Shapes 

0 outliers         2 outliers          6 outliers         12 outliers  

Mean 

Median 

Sarang Joshi, Utah 



Landmarks / Homologous Points 

• A landmark is an identifiable point on an object that 
corresponds to matching points on similar objects. 

• This may be chosen based on the application (e.g., by 
anatomy) or mathematically (e.g., by curvature). 



Landmarks ctd. 

• Anatomical landmarks are points assigned by an 
expert that corresponds between objects of study in 
a way meaningful in the context of the disciplinary 
context. 

• Mathematical landmarks are points located on an 
object according some mathematical or geometrical 
property, i.e. high curvature or an extremum point. 

• Pseudo-landmarks Constructed points on an object 
either on the outline or between landmarks. 

[Dryden & Mardia] 



Landmark Correspondence 

Homology:  
 
Corresponding (homologous) 
features on skull images. 



Correspondences and Shape 

• The choice matters 
– Defines the shape space 

• Manual landmarks 
– Not practical 

– 3D, not clear 

– User error 

• Need: automatic 2D/3D correspondence placement 
– Computational concept? 



“Good” and “Bad” Correspondence 

“Good” placement: 
• Reduced variability. 
• May lead to better, 

more compact statistical 
shape models. 

Left: Arc-length parametrization 

Right: Manual placement of corresponding landmarks 
 

From: PhD thesis Rhodri Davies 



Spherical Harmonics: Correspondence 
via Parametrization 

Szekely, Kelemen, Brechbuehler, Gerig, MedIA 1996 



Correspondence: SPHARM 

• Correspondence by same parameterization 
– Area ratio preserving through optimization 

– Location of meridian and equator ill-defined 

• Poles and Axis of first order ellipsoid 

• Object specific, independent, but sensitive to objects with 
rotational symmetry/ambiguity 

Surface 

Parametrization 

SPHARM 



Correspondence and quality of 
shape model 

         Manual placement                     Arc-length parametrization 

From: PhD thesis Rhodri Davies 



Optimization of Correspondence: 
Reparametrization 

Rhodri Davies, 2000 



Optimization of Correspondence: 
Reparametrization 

Rhodri Davies, 2000, Springer 2008 



Correspondence Depends on the 
Population 

• Image warping based on local/nearest 
differences 

• Alternative: take into account the trends in 
the ensemble 

– Davies et al. 2000 (MDL) 

– Particle entropy (Whitaker, Cates, 2011,12) 

– Unbiased atlas building (Joshi, Davis, 2004) 



Group-wise Approaches 

• Use whole set of objects to determine 
correspondence via optimal group stats 

– Can be applied both to parametric & non-parametric 
descriptions 

• Advantages: 

– No template bias 

– Represent all objects in a population, not just those 
close to the mean 

– Expect higher reliability, lower variance 

– Expect higher statistical sensitivity 

 



Correspondence as Optimization 
• Pairwise mapping of curves 

• Search space: all feasible 
correspondences 

• Objective function on 
quality of correspondence 

 

 

• Use trend of ensemble: 
Optimize over population in 
shape space. 

• Re-parameterisation 
function for each shape. 
– valid correspondences  

diffeomorphic mapping 

 

 

Rhodri Davies, Chris Taylor, MDL, PMI 2003 Hemant Tagare, IPMI 1997 



MDL: The Objective Function 

• Simplest Model has minimum stochastic 
complexity → Information Theory 

• Minimum Description Length (MDL) 
• Transmit training set as encoded message 

– parameters of model, encoded data 

• Model complexity vs. fit to data 

Rhodri Davies, Chris Taylor, MDL, IPMI 2003 



Ensemble Correspondence: Evaluation 
Criteria 
• Generalization: Ability to describe instances outside of the 

training set 
– leave-one-out 
– approximation error 

 
• Specificity: Ability to represent only valid instances of the 

object 
– generate new sample 
– distance to nearest training member 

 
• Compactness: Ability to use a minimal set of parameters 

– cumulative variance 
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Evaluation: MDL vs. SPHARM 

Hippocampal 
Shapes 
82 samples 

Generalization: Leave one out 

Specificity: Generate new samples, 
distance to nearest member 

Compactness: Cumulative Variance 
Rhodri Davies, Chris Taylor, MDL, PMI 2003 
Styner.,.., Davies, IPMI 2003 



• Minimize shape entropy (simple, compact description) 

• Linear model -> minimize log of determinant of  
– Equivalence of MDL – Davies et al. 2002, Thodberg 2003  

• Issues 
– Numerical regularization 

• Small modes dominate 
 

 

– Degenerate solutions 
• Parameterization favors points where shape overlap 

Shape space 
Compact/simple 

shape space 

Geometrically 
accurate on 

surfaces 

R. Whitaker, J. Cates, Uah 

Modeling a Shape Ensemble: 
Strategy for Landmark Placement 



Particle-Based Shape Correspondences 

• Shapes as a set of interacting particle systems 
• Compact models, but balanced against geometric 

accuracy (good, adaptive samplings) 
• Optimize particle positions by minimizing an entropy 

cost function 

Entropy of the  
shape ensemble 

Entropy of each 
individual shape 

sampling 

R. Whitaker, J. Cates, M. Datar,  IPMI 2007, MICCAI 2013 

Low entropy High entropy 



Entropy-based Particle Systems 

• Surfaces are discrete point sets, no parameterization  

• Dynamic particles, positions optimize the information of the 
system: ensemble entropy, surface entropy 

 
 

 

 

 
 

 

Low surface entropy 

High surface entropy 

Images: Oguz, 2009 low is better high is better 



Particle Correspondence Model 
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Accurate Representation 
(in Configuration Space) 

vs. 

Compact Model 
(in Shape Space) 

Surface Entropy Ensemble Entropy 

Cates et al. IPMI 2007, Datar MICCAI 2011 



Modeling Head Shape Change 

Link to Movie 

Changes in head size with 
age 

Changes in head shape 
with age 

Datar, Cates, Fletcher, Gouttard, Gerig, Whitaker, Particle-based Shape 
Regression, MICCAI 2009 

head-shape.wmv


Box-Bump 
Comparison with MDL 

– 24 shapes 

– MDL: 128 nodes, mode 2, 
parameters at default* 

– Particle: 100 particles per shape 

 

 

 

* See Thodberg, IPMI 2003 for details 

Results 

Single major mode of 
variation 

MDL: 0.34% “leakage” of 
total variation to minor 
modes 

Particle: 0.0015% leakage  

Cates & Whitaker, IPMI 2007 



Graph Spectra/Laplacian 

Courtesy Hervé Lombaert, Jon Sporring, Kaleem Siddiqi, Mc Gill, IPMI 2013 
 



Graph Spectra/Laplacian 

Courtesy Hervé Lombaert, Jon Sporring, Kaleem Siddiqi, Mc Gill, IPMI 2013 
 



Considering Appearance: Eigenfaces 

Sirovich & Kirby 87, Turk & Pentland 91 
Source: Iasonas Kokkinos, IPAM-UCLA Course 2013 



Eigenfaces 

Sirovich & Kirby 87, Turk & Pentland 91 
Source: Iasonas Kokkinos, IPAM-UCLA Course 2013 



Eigenfaces 

Sirovich & Kirby 87, Turk & Pentland 91 
Source: Iasonas Kokkinos, IPAM-UCLA Course 2013 



Eigenfaces 

Sirovich & Kirby 87, Turk & Pentland 91 
Source: Iasonas Kokkinos, IPAM-UCLA Course 2013 



Eigenfaces 

Sirovich & Kirby 87, Turk & Pentland 91 
Source: Iasonas Kokkinos, IPAM-UCLA Course 2013 



Active Shape and Appearance Models 

• Statistical models of shape and texture 

• Generative models 

– general 

– specific 

– compact (~100 params) 

Courtesy of Chris Taylor, 1995 



Building an Appearance Model 

• Labelled training images 

– landmarks represent correspondences 

Courtesy of Chris Taylor, 1995 



Building an Appearance Model 

• For each example 

Shape: x = (x1,y1, … , xn, yn)T 

Texture: g Warp to 
mean 
shape 

Raster 
Scan 

Courtesy of Chris Taylor, 1995 



Building an Appearance Model 

• Principal component analysis 

 

  

• Columns of Pr form shape and texture bases 

• Parameters br control modes of variation 
Courtesy of Chris Taylor, 1995 



Shape and Texture Modes 

Shape variation (texture fixed) 

Texture variation (shape fixed) Courtesy of Chris Taylor, 1995 



Combined Appearance Model 

• Shape and texture may be correlated 

– PCA of   
s

g

 
 
 

b

b

Varying appearance vector c 
Courtesy of Chris Taylor, 1995 



Colour Appearance Model 

c1 c2 c3 

Courtesy of Chris Taylor, 1995 



AAM Search – Deformable Automatic 
Segmentation 

Slide Credit: G. Lang 
Source: Iasonas Kokkinos, IPAM-UCLA Course 2013 



Active Shape Model Search 

Method: Cootes et al., 1995 
Slide: T. Heimann:  - Shape Symposium 2014, Delémont  



3D Hippocampus: ASM & AAM Modeling 
for Deformable Segmentation 

Profiles normal to surface 

capture local image intensity 

function (hedgehog) 

 

Szekely, Kelemen, Brechbuehler, Gerig, MedIA 1996 
Styner & Gerig, MedIA 2004 



Appearance Profiles across 10 training 
images 

Styner & Gerig, UNC 



Inside Outside Inside Outside 

Appearance Profiles 

Styner & Gerig, UNC 



Dual shape representations: 
PDM/SPHARM 

Styner & Gerig, UNC 



Computing the fit 

Szekely, Kelemen, Styner & Gerig, ETH, UNC 



Deformation Forces and Constraints 
Driving deformation force at 
boundary points 𝑥𝑖: 

• Start with mean shape. 

• Correlate local boundary 
appearance with statistical 
model. 

• Find suggested “shift” for 
each point  𝑥𝑖 → 𝑑𝑥𝑖. 

• Convert 𝑑𝑥 into shift in 
shape space 𝑑𝑏 → shape 
change. 

Shape constraints:  

• Ensure that 𝑑 + 𝑑𝑏 stays 
within predefined 
Mahalanobis distance of 
shape space. 



Deformable Model Segmentation 

Segmentation of corpus callosum via 
deformable model segmentation, max 
order 10 (40 coeffs) 

Fourier Descriptors of Shape Contours Paper-Kuhl-Giardina-1982, Paper-Staib-Duncan-
1992 
 

Fig. 1:  Visualization of 3 MRI mid-hemispheric slices and 
the final positions (in red) of the automatic corpus callosum 
segmentation algorithm using deformable shape models. 

Styner & Gerig, UNC 

http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Staib-Duncan-IEEE-PAMI-1992.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Staib-Duncan-IEEE-PAMI-1992.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Staib-Duncan-IEEE-PAMI-1992.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Staib-Duncan-IEEE-PAMI-1992.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Staib-Duncan-IEEE-PAMI-1992.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Staib-Duncan-IEEE-PAMI-1992.pdf
http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Staib-Duncan-IEEE-PAMI-1992.pdf


Segmentation in Action 

Styner & Gerig, UNC 

CC_seg_avs1.mpg


• Comparison of 
constrained and 
unconstrained AAM 
search 

• Conclusions: Cannot 
directly handle cases 
well outside of the 
training set (e.g. 
occlusions, extremely 
deformable objects) 

Courtesy of Chris Taylor 

Constrained AAMs 



Non Unimodal Shape Space: Gaussian 
Mixture Model 

A Mixture Model for Representing Shape Variation, Cootes et al., IVC 1999 



Variations of SSM for Segmentation 
Geodesically Damped Shape Models (Christoph 
Jud, Thomas Vetter, 2014) 
• SSM training … too restrictive …, new method for model bias reduction…, 

achieved by damping the empirical correlations between points on the 
surface which are geodesically wide apart. 

• Yields locally more flexibility of the model and a better overall 
segmentation performance. 

Jud et al., Proceedings,  Shape Symposium 2014, Delémont  



Advanced AAMs close to the Clinic 

Slide: Yoshinobu Sato:  - Shape Symposium 2014, Delémont  



Advanced AAMs close to the Clinic 

Slide: Yoshinobu Sato:  - Shape Symposium 2014, Delémont  



Alternative to PCA: Multi-affine 

Slide: Christian Lorenzen:  - Shape Symposium 2014, Delémont  



Alternative to PCA: Multi-affine 

Slide: Christian Lorenzen:  - Shape Symposium 2014, Delémont  



EM-based AAM learning 

Source: Iasonas Kokkinos, IPAM-UCLA Course 2013 
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– Statistical Shape Modeling (SSM) 
– Correspondences 
– Active Shape & Appearance Models (ASM, AAM) 

• Shape Statistics via Deformations 
– Correspondence-free Mapping & Stats via “currents” 
– Ambient Space Deformations via Diffeomorphisms 
– Statistics of Deformations of Ambient Space 

 



Correspondence-free Shape Analysis 

Brain ventricles for infants 6mo to 2yrs  DTI Fiber Tracts from two subjects 

movie 

Durrleman, Pennec, Trouve, Ayache et al., IJCV 2013 

Problems: 
• Correspondence depends on shape parameterization 
• Shapes with variable topology: correspondence undefined 

ALLFIBRES_S3_4_lambdaV20_lambdaW3_gammaR0001_BIS_Cinepack.avi


Correspondence-free similarity measures 

 
 

 

• Depends on the kind of objects: 
• Images: sum of squared differences 
• Landmarks: sum of squared differences 
• Surface mesh and curves: 

• Currents [Glaunès’05] 

 
 
 
 

 
 

 
 

 
 
 

 
 

 

• No point correspondence needed 
• Efficient numerical schemes (FFT) 
• Robust to changes in topology 

• Robust to differences in 
• mesh sampling 
• mesh imperfections… 

 Usable routinely on large data sets 
 

: tangents of curves/normals of surfaces 



“Correspondence-free” Registration: Currents 

Topology and shape differences and noise 
can make point-to-point correspondence 
hard: 

• Currents: Objects that integrate vector 
fields 

• Shape: Oriented points = Set of normals 
(tangents) 

• Distance between curves: 

[Glaunes2004] Glaunes, J., Trouve, A., Younes, L. Diffeomorphic matching of distributions: a new approach, … CVPR 2004. 
 

[Durrleman2008] S. Durrleman, X. Pennec, A. Trouvé, P. Thompson, N. Ayache, Inferring Brain Variability from Diffeomorphic 
Deformations of Currents: an integrative approach, Medical Image Analysis 2008 



Currents integrate vector field: 
 
•W: test space of vector fields (Hilbert space) 
•W*: the space of continuous maps W->R 
•W* includes smooth curves, polygonal lines, surfaces, 
meshes. 
 

[Vaillant and Glaunès IPMI’05, Glaunès PhD’06] 



Durrleman, PhD thesis, 2010 



Durrleman, PhD thesis, 2010 



Durrleman, PhD thesis, 2010 



Durrleman, PhD thesis, 2010 



The space of currents: a vector space 

Distance between shapes: 
• No point correspondence 

• No individual line 
correspondence 

• Robust to line interruption 

• Need consistent orientation of 
lines/surfaces 

• Is a norm 

• Addition  = union 
• Scaling    = weighting different structures 
• Sign         = orientation 

Durrleman, PhD thesis, 2010, JCV 2013 



Limitations of Kendall Shape Space 

• Shape Space depends on correspondence & 
parametrization. 

• Correspondence still an issue, not defined for shapes 
with varying topology/resolution etc. 

• Statistics on “precise” high-dim (often oversampled) 
descriptions of shape rather than deformations.  

• (PCA Problem: Cannot handle cases well outside of 
the training set (e.g. occlusions, highly deformable 
objects).) 

 



Critical Assessment  

Stegmann and Gomez, 2002 



Highly Recommended Reading 

D’Arcy  Wentworth Thompson, On Growth and Form (1917, mathematics and biology) 

http://archive.org/download/ongrowthform00thom/ongrowthform00thom.pdf  
http://ia700301.us.archive.org/10/items/ongrowthform00thom/ongrowthform00thom.pdf  

http://archive.org/download/ongrowthform00thom/ongrowthform00thom.pdf
http://archive.org/download/ongrowthform00thom/ongrowthform00thom.pdf
http://ia700301.us.archive.org/10/items/ongrowthform00thom/ongrowthform00thom.pdf
http://ia700301.us.archive.org/10/items/ongrowthform00thom/ongrowthform00thom.pdf


Shape Spaces: Kendall vs. Deformations  

Kendall Shape Space:  

• We are interested in the way the points of a shape 
move (or displace), but there is no general concept of 
a deformation -- analysis is based on the 
parameterization of the shape. 

• Shape Space forms a complex projective space ℂℙ𝑘−2. 

 

 

 



Shape Spaces: Kendall vs. Deformations  

Kendall Shape Space:  

• We are interested in the way the points of a shape move 
(or displace), but there is no general concept of a 
deformation -- analysis is based on the parameterization of 
the shape. 

• Shape Space forms a complex projective space ℂℙ𝑘−2. 

D‘Arcy Thompson inspired deformation based analysis:  

• Interested in the way the ambient space deforms. 

• Statistical analysis is centered on the deformations of 
space, not movement & displacement of points on shapes. 

• What is the Shape Space? Information via deformations. 

 

 

 



Shape Analysis via Transformations 

D’Arcy  Wentworth Thompson, On Growth and Form (1917, mathematics and biology) 

D'Arcy Thompson introduced the Method of Coordinates to 
accomplish the process of comparison. 



Biological variation through 
mathematical transforms 
D'Arcy Thompson laid out his vision in his treatise “On Growth 
and Form“. In 1917 he wrote: 
 

In a very large part of morphology, our essential task lies in the 
comparison of related forms rather than in the precise definition 
of each; and the deformation of a complicated figure may be a 
phenomenon easy of comprehension, though the figure itself may 
be left unanalyzed and undefined." 



Even earlier… 

http://commons.wikimedia.org/wiki/File:Durer_face
_transforms.jpg  

Albrecht Dürer (1471-1528): 
German painter, printmaker, 
engraver and mathematician. 
 
Studies of human proportions. 

Face transformations by Albrecht Dürer 

http://commons.wikimedia.org/wiki/Albrecht_Durer  

http://commons.wikimedia.org/wiki/File:Durer_face_transforms.jpg
http://commons.wikimedia.org/wiki/File:Durer_face_transforms.jpg
http://commons.wikimedia.org/wiki/File:Durer_face_transforms.jpg
http://commons.wikimedia.org/wiki/Albrecht_Durer
http://commons.wikimedia.org/wiki/Albrecht_Durer


Ambient Space Deformation 

Change in geometric 
entities in images 
represented as 
transformations of 
the underlying 
coordinate grid. 

Nikhil Singh, PhD thesis Utah 2013 



Ambient Space Deformation 

Initial velocity* as a 
smooth vector field 
and the corresponding 
diffeomorphic 
flow that transforms 
the shape “plus" to 
“flower". 
 
*velocity: momenta after 
convolution with kernel  

Nikhil Singh, PhD thesis Utah 2013 



Concept of Diffeomorphism 

Diffeomorphisms:  
• one-to-one onto (invertible) and differential 

transformations 
• preserves topology 

Slide courtesy Sarang Joshi 



Large Deformation Diffeomorphic 
Metric Mapping (LDDMM) 

• Space of all Diffeomorphisms                    forms 
a group under composition: 

 

• Space of diffeomorphisms not a vector space. 

 

• Small deformations, or “Linear Elastic” 
registration approaches, ignore these two 
properties. 

)(Diff

)(:)(, 2121  DiffhhhDiffhh 

)(:)(, 2121  DiffhhhDiffhh

Slide courtesy Sarang Joshi 



Large deformation diffeomorphisms. 

•                infinite dimensional “Lie Group”.  
• Tangent space: The space of smooth vector 

valued velocity fields on       . 
• Construct deformations by integrating flows of 

velocity fields. 
• Induce a metric via a differential norm on 

velocity fields. 

)(Diff



d 
d t 

h ( x ; t ) = v ( h ( x ; t ) ; t ) h ( x ; 0 ) = x : 



Construction of Diffeomorphisms 
Diffeomorphisms:  
• Construct deformations by integrating 

flows of velocity fields. 
• Induce a metric via a differential norm 

on velocity fields. 
• Distance btw. two diffeomorphisms: 
𝐷 ℎ1, ℎ2 = 𝐷 𝑒, ℎ1

−1°ℎ2     (metric). 

Miller, Christensen, Joshi /  Joshi et al., Neuroimage 2004 



Ambient Space Deformation 

Momenta and the 
corresponding 
diffeomorphic 
flow that transforms 
the shape “plus" to 
“flower". 
 

Nikhil Singh, PhD thesis Utah 2013 
James Fishbaugh, GSI conference, Springer 20014 



Momenta and Statistics 

• The momenta field plays the role of the tangent 
vector in the Riemannian sense → Momenta exist in 
a linear space.  

• Analysis of geometrical variability: PCA on the 
feature vectors of deformations → PCA* by 
computing mean and covariance matrix of momenta.  

(*kernel PCA for currents) 

Miller, Trouve, Younes, On the metrics and euler-lagrange 
equations of computational anatomy. Annu Rev Biomed Eng.2002   

Durrleman et al., NeuroImage 2010 

http://www.ncbi.nlm.nih.gov/pubmed/12117763
http://www.ncbi.nlm.nih.gov/pubmed/12117763
http://www.ncbi.nlm.nih.gov/pubmed/12117763
http://www.ncbi.nlm.nih.gov/pubmed/12117763


Geodesic Flow: Initial Momenta 

momenta velocity 
Fishbaugh, Durrleman, Gerig, MICCAI 2011, 2012, 2013 

diffeomorphic 
registration 

movies/Ibis_138494_cerebellum_w_iav_glyphs_sigmaV_10_sigmaW_4_4_2_gammaR_0p01_small.gif


Flows of diffeomorphisms are geodesic → initial momenta 
parameterize deformation. 

Group A Group B 

Reference  
Atlas 

ti 

ti 

ti 

ti 

ti 

ti ti 

ti 

ti 

Statistics on Deformations 

Fishbaugh, Durrleman, Gerig, MICCAI 2012 



Flows of diffeomorphisms are geodesic → initial momenta 
parameterize deformation. 
Geodesics from atlas to each subject share the same 
tangent space, so we can perform linear operations on the 
momenta, such as computing the mean and variance. 
 

Statistics on Deformations 

Fishbaugh, Durrleman, Gerig, MICCAI 2012 

Group A Group B 
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Atlas 
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First mode of deformation from PCA per age group, explaining 
the variability of each group w.r.t. the normative reference atlas.  
 

.  
 
Hypothesis testing → no significant differences in magnitude 
of initial momenta 

Clinical Application: Autism 



Momenta and Statistics 

Durrleman et al., NeuroImage 2010 



Momenta and Statistics 

Durrleman et al., NeuroImage 2010 



Momenta and Statistics 

Durrleman et al., NeuroImage 2010 



Statistics on Deformations 

Most discriminative deformation axis 
between Down’s and Controls. 

Durrleman et al, Neuroimage 2014 

Geodesics from atlas to each subject 
share the same tangent space. 
 
Momentum vectors of DS subjects 
(red) and controls (blue) in atlas 
coordinate space. 



Statistics on Deformations 

Most discriminative deformation axis between Down’s Syndrome and 
Controls. Durrleman et al, Neuroimage 2014 



Deformetrics with Sparsity:  
Tackling fundamental problem of high-dim 
features & low-dim sample size (HDLSS) 

Image evolution described by considerably fewer parameters, 
Concentrated in areas undergoing most dynamic changes 

Durrleman, 2013 / Fishbaugh IPMI 2013, GSI 2013 

Initialization Atlas 



Statistics: Ambient Space Deform. 

 
 

 

Common template for 
8 Down’s syndrome patients + 8 Ctrls  

 

Most discriminative axis 

Classification (leave-2-out) with 105 control points: 

specificity sensitivity 

Max Likelihood 100% (64/64) 100% (64/64) 

LDA 98% (63/64) 100% (64/64) 

Importance of optimization in control points positions! 

Classification (leave-2-out) with 8 control points: 

specificity sensitivity 

Max Likelihood 97% (62/64) 100% (64/64) 

LDA 94% (60/64) 89% (57/64) 



Deformation of Ambient Space 

Main advantages:  

• Shape space independent on shape 
representation. 

• Natural way to handle multiple shapes, 
topology variations, combinations of points, 
lines, contours, image intensity etc. 

• Statistics on low #features rather than high-
dimensional oversampled shape 
representation. 



Mean and Variability 

High-dimensional space: 
• Variances and covariances 
• Non-Euclidean geometry 
• Statistics on tangent spaces 

 

 
Singh, Fletcher, Joshi et al., ISBI 2013, best paper award 



Normative Atlas of 4D Trajectories: 
Work in Progress 

Group differences in rates of 
longitudinal change/atrophy in AD, 
MCI and Normal control. 

Nikhil Singh et al., ISBI 2013, best paper award 



Quotation of the Day 

“The perfection of mathematical beauty is such 
….. that whatsoever is most beautiful and 
regular is also found to be the most useful and 
excellent.” 

 

D’Arcy Wentworth Thompson 



Software Resources 

http://www.shapesymposium.org/  

http://statismo.github.io/statismo/  

Keynotes by M. Styner, T. Heimann, Y. 
Sato, Ch. Lorenz, X. Pennec, G. Gerig 

http://www.shapesymposium.org/
http://www.shapesymposium.org/
http://statismo.github.io/statismo/
http://statismo.github.io/statismo/


Software Resources 

http://www.deformetrica.org/ 
 
Paper: Durrleman et al., Neuroimage 2014  

http://www.deformetrica.org/
http://www.deformetrica.org/


Software Resources 

http://www.isbe.man.ac.uk/~bim/software/index.html  

Tim Cootes, Modeling and Search Software (C++ and VXL) 

A set of tools to build and play with 
Appearance Models and AAMs. 

A basic program to 
experiment with Active 
Contour Models (snakes). 

http://www.isbe.man.ac.uk/~bim/software/index.html
http://www.isbe.man.ac.uk/~bim/software/index.html


Conclusions 

• “Shape” is a fundamental concept of human perception. 

• “Shape Analysis” is still a very active research topic. 

• “Shape” is an essential concept for Medical Image 
Analysis. 

• Many methods (SSMs in medicine, face & fingerprint 
recognition, face indexing,…) have found applications in 
daily routine. 

• Serious mathematical & statistical concepts help to make 
the field much more mature, but:  

• Need to bridge the gap between the “Beauty of Math” 
and “Biological Shape”. 
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Are you still in “Good Shape”? 

Bob Dylan & the Band: 
The Shape I'm In 
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