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Supervised machine learning (classification) 

Input test data point 

structure + parameters 

Learned model (classifier) 

predicted class label 

Output 

measurements (features) only 

Test phase (run time, online) 



Data representation, feature vectors and data points 
Features in 2D space Features in 3D space 

Data point =  
Feature vector 



Data representation, feature vectors and data points 

Features in 2D space 

induction 



Application: Kinect body part recognition 

Input test depth image Body part segmentation 

image measurements 
made relative to pixel 

classifier per-pixel prediction 
of class label 

e.g. depth, color, neighbors 

Task: assigning body part labels to each pixel in Kinect-acquired depth videos 

J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, 
P. Kohli, A. Criminisi, A. Kipman, and A. Blake, Efficient Human Pose Estimation 
from Single Depth Images, in Trans. PAMI, IEEE, 2012 
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A. Criminisi and J. Shotton, Decision Forests for Computer 
Vision and Medical Image Analysis, Springer, February 2013 
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Toy tree learning example 

•  Try several lines, chosen at random 

•  Keep line that best separates data 
•  information gain 

•  Recurse 
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•  Used to decide which candidate split function is best 

•  Typically an “information gain” – a very general and flexible formulation 
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Examples of split functions 

“Axis aligned” “Oriented hyper-plane” “Conic section” 

Particularly efficient 

0 
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3 4 



Decision trees: test time prediction 
test input data 

prediction 



Decision forests 

Forest prediction is an aggregate of the predictions across all trees (e.g. average probability) 



Aggregating tree predictions 
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Weak learner: axis aligned Weak learner: oriented line Weak learner: conic section 

Effect of tree depth and randomness 

A. Criminisi and J. Shotton, Decision Forests for Computer 
Vision and Medical Image Analysis, Springer, February 2013 

Free code available! 



The Sherwood free software library 

A. Criminisi and J. Shotton, Decision Forests for Computer 
Vision and Medical Image Analysis, Springer, February 2013 

Free code available! 

•  Properties 
•  In C++ and C# 
•  Can be called from Matlab 
•  Source code is available 
•  Easy to read and understand.  
•  Follows the book naming convention and structure 

 

•  Classification examples 
•  ./sw clas /d 15 /t 100 /split linear exp3_n4.txt 
•  ./sw clas /d 15 /t 100 /split linear exp7_n4.txt 

•  Regression examples 
•  ./sw regression /d 4 /t 100 exp8.txt 
•  ./sw regression /d 4 /t 100 exp10.txt 
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•  Learned image super-resolution 
•  Quantifying progression of multiple sclerosis 

J. Shotton, T. Sharp, P. Kohli, S. Nowozin, J. Winn, and 
A. Criminisi, Decision Jungles: Compact and Rich 
Models for Classification, in Proc. NIPS, 2013 



Are forests sufficient? 

•  Memory issues:  
•  Number of nodes in trees  
   grows exponentially with depth 

•  Amount of training data 
•  Training data is quickly diluted with depth 
•  Yet, training deeper trees (on enough data) yields highest test accuracy 
    (several real applications, e.g. Kinect, have “infinite” data available) 



From trees to DAGs: node merging 

•  Each internal node has 2 children 
(like in binary trees) 

•  Each non-root node can have 
more than 1 parent 



Decision jungles 
•  A “jungle” is an ensemble of rooted decision DAGs 

 

•  We train each DAG layer by layer, jointly optimizing both 
•  the structure of the DAG 
•  the split node features 

… 



Properties of jungles 

• Limited memory consumption 
•  e.g. by specifying a width at each layer in the DAG 

• Potentially improved generalization 
•  fewer parameters 
•  less “dilution” of training data 
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How do DAGs help in practice? 
 A toy example on classifying images of cows, sheep and grass 

Training data 
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Axis-aligned splits only 

A toy example on classifying images of cows, sheep and grass 
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Estimated: cow Estimated: sheep 
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Too many model parameters: overfitting 

Tree 
A toy example on classifying images of cows, sheep and grass 
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DAG 

A toy example on classifying images of cows, sheep and grass 
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Node merging 
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Correct generalization: grass 
 
capturing illumination invariance 
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DAG 

A toy example on classifying images of cows, sheep and grass 
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Trees vs DAGs 
A toy example on classifying images of cows, sheep and grass 

Merged nodes help capture appearance invariance 



Jungles: training objective 

features and branches 
for all parent nodes 𝑖  sum over 

child nodes 𝑗  

entropy of 
examples that 

reach child node 𝑗  

number of 
examples at 𝑗  



Jungles: optimization algorithm 

• Allocate a maximum of 𝑀=|​𝑁↓𝑐 | nodes per level 
•  allows us to fix memory budget 

• Simple “move-making” optimization algorithm 
•  start from “feasible” initialization 
•  randomly choose a parent node 
•  either update its split function (given fixed DAG structure) 
•  or update its left or right branch (given fixed split function) 



Algorithm overview 
• Train each DAG layer by layer, jointly optimizing both 

•  the structure of the DAG 
•  the split node features themselves 
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<- Graph structure 
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Current objective score = 2.87 
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Jungles: results 



Jungles: accuracy vs. compute time 



Jungles: node budget M 



Input 
Image 

Ground 
Truth 

Merged DAGs 
Segmentation 

Standard Trees 
Segmentation 

Input 
Image 

Ground 
Truth 

Merged DAGs 
Segmentation 

Standard Trees 
Segmentation 

Jungles: results 





Talk overview 

• A brief introduction to machine learning 

• Decision forests and jungles 
 
• Applications in medical image analysis 

•  Anatomy localization 
•  Spine detection 
•  Brain tumour segmentation 
•  Learned image super-resolution 
•  Quantifying progression of multiple sclerosis 

A. Criminisi, D. Robertson, E. Konukoglu, J. Shotton, S. Pathak, S. White, 
and K. Siddiqui, Regression Forests for Efficient Anatomy Detection 
and Localization in Computed Tomography Scans, in Medical Image 
Analysis (MedIA), Elsevier, 2013 



Anatomy Localization in 3D Computed Tomography Scans 

- Direct mapping of voxels to organ bounding boxes.  
- No search, no sliding window.  
- No need for registration. No other pre-processing steps. 

Input CT scan Output anatomy localization 
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High variability in appearance, shape, location, resolution, noise, pathologies … 

Anatomy localization: why is it hard? 



Different image cropping, noise, contrast/no-contrast, resolution, scanners, body shapes/sizes, patient position… 

Anatomy localization: the ground-truth database  



•  Each voxel  in the volume votes for the position of  the 6 box sides 
•  We wish to learn a set of  discriminative points (landmarks, clusters) 
     which can predict the kidney position with high confidence. 

Error in model fit 

(weighted uncertainty  
for all organs) 

(relative displacement) 

(Gaussian repres. of  distribs) 

Regressing an n-D piece-wise constant model 

Node split function 

Node optimization 

Node training 

Input data point 

Output  

Feature response 

(voxel position in volume) 

(bound. box continuous pos.) 

(mean over displaced 3D boxes) 

Multiple organs  

Anatomy localization: regression forest 



Anatomy localization: context-rich visual features 
Possible visual features Computing the feature response 

… 

Capturing spatial context 



Anatomy localization: automatic landmark discovery 

                    Input CT scan and detected landmark 
regions 

Here the system is trained to detect 
left and right kidneys. 

The system learns to use bottom of 
lung and top of pelvis to localize 
kidneys with highest confidence. 
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GeoF: Geodesic Forests for Learning Coupled 
Predictors, in Proc. Computer Vision and Pattern 
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Entangled geodesic forests for semantic segmentation 

•  Using soft connectivity features efficiently 
•  Capturing semantic context 
•  No need for Markov-, Conditional Random Field post-processinf 

lung 
lung 

air 
air 

air 



Entangled geodesic forests for semantic segmentation 

sec 0 sec 0 

Input 

Tree 0 Tree 0 Tree 1 Tree 1 Tree 2 Tree 2 

sec 0 sec 0 sec 0 sec 0 

posteriors of forest after section 0… 

+ gen. geod. distances after section 0 

Posteriors 

sec 1 sec 1 sec 1 sec 1 sec 1 sec 1 

Posterior 0 + 
gen. geod.  

Posterior 0 + 
gen. geod 

Posterior 0 + 
gen. geod 



Entangled geodesic forests for semantic segmentation 

Algorithm Jaccard 

Conventional Classification Forest 53.2 

Classification forest + (CRF) 68.3 

Auto-context classification forest 65.9 

Entangled classification forest 58.3 

Auto-context geodesic forests 69.2 

Entangled geodesic forests 72.3 

Input 

Ground truth             Our results 



Entangled geodesic forests for semantic segmentation 
  Input image   Ground truth          D=15                  D=17                 D=20 

Automatically correcting 
for over-use of context 
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B. Glocker, D. Zikic, E. Konukoglu, D. R. Haynor, and A. Criminisi, 
Vertebrae Localization in Pathological Spine CT via Dense 
Classification from Sparse Annotations, in MICCAI 2013, 
Springer, September 2013 



Vertebrae localization and classification 

Name of this 
vertebra? 



Extracting a patient-specific coordinate system 

•  Guided visualization/navigation 
in diagnostic tools 

•  Longitudinal assessment 
after surgical Intervention 

•  Shape/population analysis for 
disease modelling 

Clinical motivation 



•  Repetitive nature of structures 
•  Variability from normal anatomy 
•  Presence of pathologies and/or external objects 
•  Varying image acquisition 

(FOV, noise level, resolution, …) 

Challenges 



Some results 



Some results 
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D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, J. Shotton, C. Demiralp, 
O. Thomas, T. Das, R. Jena, and S. Price, Decision Forests for 
Tissue-specific Segmentation of High-grade Gliomas in Multi-
channel MR, in MICCAI 2012, Springer, October 2012 



Segmentation of  
tumorous tissues: 
 
 
 
 
 

 
 
 
 

 
---- Active cells 
---- Necrotic core 
---- Edema 
---- Background 
 

3D MRI input data 

T1-gad T1 

T2 

DTI-p 

FLAIR 

DTI-q 

Automatic segmentation of brain tumour 



Tumour 
Tissue 
Classification 

Training a voxel-wise forest classifier 



New Patient,  
previously unseen 

Tumour 
Tissue 
Classification 

Testing the voxel-wise forest classifier 



Building the training database 



Building the training database 



Building the training database 



Glioblastoma segmentation results 
patient 1  patient 2  patient 3  patient 4  patient 5  



Glioblastoma segmentation results 
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Learned image super-resolution 

Learned voxel predictor 

Low-res diffusion MRI 
(faster acquisition, cheaper) 

High-res diffusion MRI 



Learned image super-resolution 

Problem statement 
    learning to predict the value of the high-res voxels 
    from the low-res voxels. 
 
-  Training data can be easily obtained 
-  Well defined accuracy measure 



Learned image super-resolution 

Direction-encoded colour FA maps for various reconstructed DTIs Comparison of ground truth NODDI parameter maps with various  
fitting techniques 



Learned image super-resolution 

D. Alexander, D. Zikic, J. Zhang, H. Zhang, and A. Criminisi, 
Image Quality Transfer via Random Forest Regression: 
Applications in Diffusion MRI, in MICCAI, Springer, 2014 

Reconstruction errors for DT maps Reconstruction errors for NODDI parameter maps 
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Depth Videos, in MICCAI 2014, Boston, Springer, 2014 

Prize for largest number of authors ever? 



Quantifying progression of Multiple Sclerosis 

•  Using Kinect to assess MS patients 
•  No use of MR imaging 
•  In the hospital or at home 
•  Through games and physical exercises 
•  Cannot use the available Kinect SDK 
     (designed for gamers rather than patients)  



Quantifying progression of Multiple Sclerosis 

Finger to nose test Finger to finger test Drawing square test Truncal ataxia test 

•  9 movements/tests designed by the radiologists in our team to tease out various disfunctions. 

Input depth video Geodesic segmentation 
in depth space 

Extracted foreground Normalization in x,y  
and depth 

•  Hundreds of depth videos from dozens of patients in 5 different European medical centres 



Quantifying progression of Multiple Sclerosis 

Spatio-temporal features 

t 

y 

x 

Channels: 
•  Optical flow 
•  Depth values 
•  Gradients 
•  Colour 

Depth video 



Quantifying progression of Multiple Sclerosis 



Quantifying progression of Multiple Sclerosis 
Interpretability of results (forests). Automatic discovery of discriminative spatio-temporal landmarks. 

Finger to nose test Finger to finger test Drawing square test Truncal ataxia test 



Modern, efficient machine learning has  
the potential to revolutionize medicine! 



Microsoft Research  
Bright Minds Competition 
 
research.microsoft.com/undergrad 


