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The weakest link

• Fun stuff: deformable registration, motion estimation, segmentation

• Mathematical heroics

• Let someone else worry about signal & image analysis, physics, all that jazz

Message of this talk: there is intelligent life in the basement, and it makes a difference! 



Overview

• Features

– local phase, phase congruency

– MR/US registration, cell segmentation, vascular segmentation, ...

• Texture

– Fractal dimension on Riesz transform

– Staging liver disease

• Uncertainty

– Histograms & Shannon – NP Windows

– Entropy, mutual information

• Shape 

– Integral invariants and eccentricity transform

– Mammography segmentation and deformable registration

• … and a postscript



The feature zoo

• There is more to images than 

steps

• They are relatively rare in 

medical images

• ..but most feature detectors 

are specialised for steps

Steps of varying contrast

Thin lines

Localised “blob”s

Corners of varying angle

…

Task: segment these 

HeLa cells, and identify 

the nuclei Task: separate the vascular & 

bile structures from fibrosis



… which begs the questions

• Is there a mathematical definition of a feature, to replace 

this phenomenological view?

– Most proposals have concentrated on |nI| …

– There have been formal definitions available for over 30 years

– The (medical) image analysis has largely ignored them

• Does “texture” form part of being a feature, or is it 

something that is derivative, as a collection of features?

– David Marr argued that “texture” can be defined as first-order 

statistical distributions over “zero crossings” of the Laplacian of a 

Gaussian (isotropic) filter

– Bela Julesz argued for the primacy of texture, with “texton” 

receptors, that are learned.



A case study: the Canny edge detector*

• Blur the image with a Gaussian

• Estimate d/dx, d/dy with finite differences

• Estimate the local gradient direction

• Perform non-maximum suppression

• Perform hysteresis thresholding

• Combine over scales: fine to coarse

*33 yrs ago



Two examples of Canny



Breast MRI

Task: 

segment the 

breast () 

and the ductal 

structures (X)

Liver MRI

Task: 

segment 

the 

pancreas, 

ductal and 

bile 

structures 

(X)



Canny assessment

• Most widely used edge detector for last 20 years

• Works well on steps, not on other features

• On steps, response determined by contrast –

because it uses intensity gradient

• Performs poorly on texture

• … surely, we can do better?



Other proposals

• Marr’s primal sketch

– Pre-determined zoo of features + feature fusion

– Never worked

• Anisotropic diffusion

– Still predominantly steps

– … and energy of gradient

– Total variation

• Wavelet transform

– Decimated (Mallat): not shift invariant

– Complex (Kingsbury): fundamentally 1D signals



An alternative approach: local phase

Constrast sensitivity to gratings, and application to 

texture, Campbell & Robson, 1968

Features and texture are characterised by their high 

frequencies in Fourier transform, discussed in 

psychophysics literature since 1920s

Windowed* FT (Gabor, 1950) 
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The importance of phase
Oppenheim’s demonstration

I1 I2

FFT FFT

FFT-1

I3

Do you see: I1, 

I2, neither, or 

both?
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The Fourier Transform of a signal is complex valued: generates frequency & phase



Breast MRI Liver MRI

Breast energy; liver phase Breast phase; liver energy



Local phase … of a signal

Bandpass to tame noise, say b(t)
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Hilbert transform
)( ansformFourier tr uf

)(ˆ transform

 Hilbert of ansformFourier tr

ufH

The * ( ) of a function ( )

is defined by:

1 1
                   ( ) ( )

1
Since the Fourier transform of  is the Heaviside 

step function sgn( )

ˆWe have:     ( ) (

H

H

H

Hilbert Transform f t f t

f t f t
t

t

u

f u f



  
   

  

 ) sgn( )u u

*see Bracewell, Fourier Transform and its Applications



FT of 1/t
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Hilbert transform rotates by π/2 in the Fourier 

domain
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In this case, θ=-π/2 …. and for such a rotation 

we say that the filters are in quadrature (e.g. 

sin, cos)

Recall rotation in the plane:



Analytical Signal & Hilbert Transform

)(

)(
)(tan    phase local            

)()()(energy   local            

 define

  tous enables This  .
2

by  rotated isbut  )( as magnitude same  thehas

 )(ˆ ransform Hilbert t thedomain, Fourier  thein that recall We

 )( of Transform Hilbert  theis )( where

)()()(                             

:)(   theusing defined are

)( signala  of phase) ,(amplitude properties local  theally,Mathematic

22

tf

tf
t

tftftA

uf

uf

tftf

tjftftf

tf

tf

H

H

H

H

HA

A











SignalAnalytic 

Quadrature filter pair

Frequency throws away 

key information



Analytic signal

)()(ˆ)(ˆ Evidently, usignufufH 

Original signal FT of 

f

Hilbert transform 

of f

Analytic signal for 

f

No residual “negative frequencies...”

… well, that’s signals sorted, now let’s look at 

images



Maria Concetta Morrone Robyn Owens

Local phase congruency

Idealised 

features

step ridge

A feature is defined as a point in an image (or signal) where the phases line up

Phase, at any single scale is largely meaningless



Kovesi’s implementation of phase congruency
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Two problems:

• The Hilbert Transform, and so Kovesi’s implementation, only defined for 1D 

signals

• How do add phases and avoid phase wrap-around?



the monogenic signal
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Monogenic triple of filters

Bandpass filter b

This is even

h1*b 

odd

h2*b

odd & quadrature pair to h1*b 

h1,h2 provide the quadrature required for local phase estimation

A key choice is the bandpass filter.  Choices include difference of 

Gaussians, Gabor, log Gabor.  Mellor and Brady have developed a family of 

rotationally-symmetric, scale-robust, linear bandpass filters (PAMI 2008)



Riesz filters

h1*b h2*b



Local energy, local phase

Local energy

Note 

contrast 

variance

Local phase

Negligible 

contrast 

variance
Bandpass filter is Mellor-Brady



Brightfield confocal 

microscope image 

of clusters of 

touching HeLa* 

cells

Segmented cells 

from monogenic 

signal features 

integrated into a 

level set 

segmentation 

algorithm

Segmentation superimposed on 

a Zn-ATSM fluorescent image

R. Ali, M. Gooding, T. Szilagyi, M. Christlieb, M. Brady, 

"Automatic segmentation of adherent biological cell 

boundaries and nuclei from brightfield microscopy images", 

Machine Vision and Applications, April 2011

*HeLa is an immortal cell line, first 

taken from Henrietta Lacks, who 

died of cervical cancer in 1951



Vascular segmentation in non-alcoholic steahepatitis

T2* 

weighted 

images



MRI analysis using DOG* (bandpass) filter

* Difference of Gaussians

MRI image of a 

slice of the heart
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The images are phase estimated using monogenic signal



3D ultrasound phase estimation using DOG filter

Slice of 3D 

ultrasound of the 

heart

octaves 3.5 spansfilter  ,1.0



MRI-ultrasound image fusion

Intensity based image fusion

Phase-based image fusion based on the monogenic signal

Zhang Wei Wei, Noble, and Brady, IPMI 2005



Similarity from (local) phase mutual information

Post-Treatment Image with Manually 
Identified control points

Local Phase (Pre)

Local Phase (Post)

Warped Post-Treatment Image

Grid

Pre-Treatment Image with Manually 
Identified control points

Mellor & Brady, Medical Image Analysis, 2005



Intensity PDF vs Phase PDF

Pre-Treatment

Post-Treatment

Intensity PDF: pre Local Phase PDF: pre

Intensity PDF: post Local Phase PDF: post

In both cases, intensity and local phase, we estimate PDF using NP windows
Mellor & Brady, Medical Image Analysis, 2005



Resampling MR images from Riesz components

Axial view Sagittal view

Coronal view

3D 

segmentation 

of the bladder

Chi, Brady, and Schnabel, 2013



Often, we have images in all 3 directions…

axial

coronal

Chi, Brady, and Schnabel, 2013



For “congruence”, how do you combine local phases?

The big problem is phase wrapping: (π+α)+(π-β)=(α- β)

This impacts on every method (such as Kovesi’s) for weighted sums of phases 

over scale (amplitude weighted, Riesz weighted, …)

Is there an intelligent way to address this problem?  YES: geometric algebra
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A phase wrapping algorithm

First, De Moivre’s theorem:     
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• This does not require the monogenic signals to have the same 

amplitudes (they rarely do)

• Normalisation is not necessary

• The number of operations required to implement this is 4(n-1) – fast!!



A regular texture



Monogenic assumes a single orientation at each 

image location

 

Suppose that ,  are the Riesz components at any given image location.

The local orientation in the monogenic signal is given by tan /

This defines a single orientation, and intrinsically loses i
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In textures, we often have multiple orientations at each point
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sum of two sinusoids
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For texture analysis, use Riesz components



Riesz component weighting for phase congruency
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Riesz components for texture

Kovesi’s energy weighted PC

Riesz weighted PC

Riesz – Energy 

the difference is most 

pronounced in the texture that 

is of interest



Staging liver disease: primary sclerosing cholangitis
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Ishak grade 0: healthy

Ishak grade 4: severe disease



Ishak grades

Grade 2 Grade 4Grade 3



Towards automated Ishak scoring

Ishak 0: healthy phase Feature asymmetry

phase Feature asymmetryIshak 4: severe disease



Liver texture analysis

Correlation with pathology, r = 0.967

The texture features we have 

experimented with to date include: 

• Fractal dimension 

• Entropy X

• Clumpedness X

• Laws filters 



Uncertainty is ubiquitous in signal/image analysis

T= 180 seconds, 

Bandwidth = 1.79

Test image Histogram Kernel estimator

Kernel estimator

With optimal bandwidth

Accurate estimate

poor good

Computational 

efficiency

low

high

Histogram

Non-optimal 
kernel

Optimal kernel

What we really 
need!!!

Comparison of various PDF estimates



What’s the root of the problem?

Two images that 

seem to be 

dissimilar…

Their histograms are 

identical … and so 

are their kernel 

density estimators!

• Estimators based on population statistics ignore the order of samples in a signal or 

image

• Order is important in a signal!!  And, signals are critically band-limited

• Choosing a suitable interpolation scheme, we can form a continuous version of the 

signal/image, and, from this, derive a superior PDF estimate …quickly!!



..if you do take sample order into account

Now they are clearly distinguished!   Here the PDFs are derived using 

NP Windows.
Kadir and Brady 2004; Joshi and Brady, 2007, 2008, and IJCV 2009, in press; Dowson, Kadir, and Bowden PAMI 2008



NP windows

Discrete time

signals
Interpolation model: 

continuous signal
PDF estimate

x
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a portion of a signal:
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Linear interpolation uniform distribution.  Other interpolation is possible, of course

Kadir and Brady 2004; Joshi and Brady, 2007, 2008, and IJCV 2009, in press; Dowson, Kadir, and Bowden PAMI 2008
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|y0 – y1|
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|y1 – y2|
-1

Calculate PDF of each 
piecewise linear section, 
using the Transformation 
Formula, and superpose 
them

This extends readily to 2D, 

3D, ....
From signal to PDF



Comparison of various PDF 

estimates

T= 180 seconds, 

Bandwidth = 1.79

Test image Histogram Kernel estimator

Kernel estimator

With optimal bandwidth

T=30 milliseconds

NP windowsGround Truth

Histogram of highly upsampled version 

of the test image



Mesorectal fascia segmentation

Cyan coloured contour:
Hand-drawn by clinical
expert

Yellow coloured contour:
Our algorithm

Joshi & Brady 2007, 2008



Tissue class segmentation

Green: lumen

Red: rectum/
tumour

Blue: mesorectum

Joshi & Brady 2007, 2008



Does NP Windows really make a difference to the 

calculation of entropy?

Image fragment

NPW on 3X3 window
NPW on 5X5 window

Histogram on 3X3 window Histogram on 5X5 window

Unlike kernel density estimators, there is no bandwidth parameter to optimise .. In fact, 

there are no parameters to set!!  Typical compute time = 35ms for a 128X128 image



Matching shapes

1992 1995 2000



Shape matching

• Task: match shapes, noting significant difference

– Disease progression; response to therapy; imaging conditions..

• Shape descriptors

– Boundary & interior contain complementary information – use both

• Boundary

– Robust to noise, errors in segmentation, ..

– Need to align “key” points: scale space

– Invariant to articulations

• Interior

– Geodesics between points

• Fast marching algorithm

– Fusion of boundary and interior



Shape matching

Left: a CC/MLO pair of density maps 

output from Volpara

Right: match of the contours using 

integral invariants and fast-marching 

algorithm

Robustness to articulation differences rules out projective* & algebraic invariants

*Except if combined with pictorial structures

Two of Kimia’s dude shapes



Differential invariants?

• Differential invariants are based on 2nd plus order derivatives, so VERY prone 

to noise…

• Less well known are integral invariants … but they have substantial 

advantages, and they are fast to compute



Integral invariants are resistant to noise

Integral invariants



Integral Invariants

The value at each point along the 

curve is the intersection of the circle 

with the shape

Increasing the radius of the shape 

defines a scale space

Simple shape Integral invariant

Outline of a 

spiculated mass
Integral invariant 

– a signature
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Example

Two shapes; the red one has an 

occlusion (not an amputation)

Correspondences shown as black 

lines

Geodesic distance map computed by 

Fast Marching Algorithm



Results for Kimia’s database of shapes



Results for Kimia’s database of shapes

Good news!!!  Fish do not resemble mammals



Encoding the shape interior
depends on geodesic distance

Geodesic distance tells how far two points in a shape are, in particular how far 

apart two points on the boundary ∂C are – enabling combination with the 

integral invariants

Euclidean distance Geodesic 

distances from 

Fast Marching 

Algorithm

Example 

geodesic 

paths



Eccentricity transform
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Let ,  be points on a curve .  The eccentricity transform 

                          ( ) max ,

where ,  is computed from the solution to the 

Eikonal equation:      , 1;   0
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The Fast Marching Algorithm can be used to compute this solution

Temporal evolution of the FMA



Matching temporal mammograms

Temporal pairs from the Elizabeth Wende clinic, NY



Detecting mismatched portions of the shape
occlusions and new growths



False positive reduction in mass segmentation
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False positive reduction

 

 

Segmented boundary

Ground Truth

Overlaping region

“ground truth” and the 

ROI boundary after FP 

reduction

Automated 

segmentation of a 

mammogram, no FP 

reduction



Conclusions

… but allow me add a postscript



… commercial exploitation



Fusion 7D  MiraView  TrueD

a sequence of successful commercial products

PET-CT image fusion.  Upper left: CT; lower left FDG-PET; upper right PET fused with 

CT by non-rigidly registering the PET data to the coordinate frame of the CT.  This 

snapshot is from the Siemens TrueD workstation, courtesy Dr. Jérôme Declerck, Chief 

Scientist, Siemens Molecular Imaging, Advanced Applications Laboratory, Oxford.

Oxford Eng Science + Siemens

Fusion7D MiraView TrueD XD

All told, installed in over 2,000 hospitals world-wide



Tri-modal fusion: PET, CT, MRI

• Software based PET-MR fusion

• Data from hybrid PET/CT and stand-alone MR scanners

• Doesn’t require new hardware

Key
CT in Grayscale

PET in Purple/White

MR in Red/Brown



Quantifying disease/therapy progression

7 time-point PET/CT of the same patient



Radiotherapy planning/monitoring

Dose deformation and 

summation…

Adaptive re-planning



The looming pandemic

2000

2030

36% of US population is 

obese 

24% UK population

In 2008, 170 million of the 

world’s children were obese 

20% EU kids and rising fast

The world’s favourite foods Hepatitis C

Fatty liver disease in 

numbers

2000: 155 million 

2030: 357 million

Massive growth in BRIC 

countries

• Cirrhosis, hepatocellular carcinoma, 

… metabolic syndrome, ….

• Surge in (non-alcoholic) fatty liver 

disease and NASH 

• 30% Western population has liver 

disease – ill defined

• Dame Sally Davies: liver disease is 

THE main priority

• Leading cause of liver transplant by 

2020

• Desperate need for (imaging) 

biomarkers for drug trials



What happens if liver disease is suspected?

• Biopsy with a 20cm needle

 … is painful, costly ($1K – rising to $4K in cases of complications)

 … has a 1-2% risk of significant bleeding and 0.1% risk of death

 … and samples 0.02% of the 2.5Kg liver



Normal and post-pancreatitis patients

In liver, normal T1 is <810 milliseconds. Both patients here have normal liver T1.

Patient on left has presumed normal pancreas, with low T1 (blue = normal). Patient 

on right is being investigated for suspected gallstone pancreatitis (2 admissions in 

last 6/52), and has much higher pancreatic T1, approx 1050 milliseconds (green 

suggests ↑extracellular fluid).  Need for physics-based fusion: T1,T2*,Dixon



Why image fusion?

Average T1 is 817ms – which is 

reassuringly normal
… but the T2* image shows 

massive iron content (too 

much red wine)

… after image fusion of T1, T2*, Dixon, the corrected T1 is 959ms, 

indicative of severe disease – confirmed on biopsy.



Staging patients with chronic disease

Multiparametric Magnetic Resonance for the non-invasive diagnosis of 

liver disease.  Banerjee R et al, J Hepatol. 2013



Superior algorithms using multi-view context

ScreenPointBreast CAD company, jointly with Nico Karssemeijer, based 

largely on his work over the past 20 years…
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CAD as Decision Aid

ScreenPoint



Detecting strabismus (squint)

Strabismus affects 4% of children throughout the world – incidence is essentially same 

everywhere – that means millions of children who could benefit from screening….



From data to information 

…via the cloud

We have every hope that with the cloud and big data, our 

segmentation of iris/pupil will become even better, our 

accuracy even better than the 0.1° that we achieve now…

And we will gather population statistics about occurrence 

and subtypes of the disease…



3-way collaboration

Research
Clinical 

collaborators

Industry

A flow of 

people, ideas, 

and 

intellectual 

property

Custodians of 

the problem: 

evaluation that 

is positive & 

negative

Companies, not universities, sell 

systems

Quality systems & regulatory

Need ideas, people, and customers

Face challenges that limit 

effectiveness of products

Medical Imagers have a key 

role to play in this process: 

we understand applications 

and science-based applied 

work, and project work makes 

us ready collaborators



The messages of MISS

• There is lots of wonderful science to work 

on

• There are many clinical problems that 

need addressing

• There is too much about disease that we 

do not understand

• There can be a symbiotic relationship 

between academia and industry

• Progress demands the commitment of 

brilliant young scientists …



20 things to work on*

1. Estimate if fat is a biomarker for cancer

2. Develop a method for the combination of 

mammo, breast MRI and US

3. Use 2 to develop a decision support 

system to integrate into the tumour 

board’s workflow

4. Develop a model-based framework for the 

fusion of dPET and dceMRI

5. Apply 4 to colorectal and liver cancer 

6. Determine how to uncover masked 

tumours in mammography

7. From CT and PET develop a method for 

mesothelioma

8. Develop an MRI based method to support 

clinical assessment of endometriosis

9. Develop spatiotemporally regularised 

dynamic PET

10. Combine non-rigid registration and 

pictorial structure matching in a robust, 

accurate non-rigid registration algorithm 

for jointed structures (spine, ribcage, ...)

11. Develop existing hypoxia model to 

incorporate additional up-stream 

pathways, eg RAS

12. Extend the hypoxia & glycolysis models to 

incorporate angiogenesis

13. Develop a model of the effect of 

chemotherapy on the tumour 

microenvironment & implications for image 

analysis

14. Develop a model like 3 for radiotherapy, and 

combine with 3 to model their fruitful 

combination

15. Explore further the Pancreatic Stellate Cell 

conjecture

16. Model mathematically and computationally 

micrometastases, relate to Muschel’s recent 

expt work

17. Explore further the tumour growth model 

described in the lecture

18. Show that microcalcifications and masses 

can be assigned malignant/benign on the 

basis of spectroscopic data

19. Extend current techniques for 

hyperpolarised MRI to detect mesothelioma

20. Extend Hoffman’s work on MR-based 

attenuation correction to dPET & dceMRI

* We are, and there are lots more too.....



Whole Body Oncology More Challenging 

Than Single Organs

Patient 1 Patient 2 Patient 3 Patient 1 Patient 2 Patient 3

Contrast Agents, 

Physiology 

Diseases Implants, Surgery
Anatomical Variability



Parts-Based ModelDatabase

Landmark Localization

Using Parts-Based Graphical Models

Local Tissue

Appearance

Anatomical

Relations
Learning
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Adding landmarks

Initially, the additional landmarks (Beacons) were 

inferred from the population average, more 

recently personalised by selecting only the most 

relevant patient exemplars

Potesil, Kadir, Brady; IEEE TMI 2014; Potesil, Platsch, Kadir, Brady; IJCV 2014; 



Personalized PS outperforms standard GMs

Localization improves by 32%.

Average error:  2.35 voxels



... 2-5x more repeatable than clinician

Good Clinician Error Algorithm Error
(2mm voxels)

Vertebraes 6-10mm 2-6mm

Top lung 10mm 3-4mm

Kidney tips 10mm 3-4mm

Aortic arch 10-20mm 7mm

Carina 6mm 2mm

Sternum (top-low) 10-20mm 3mm – 8mm

Spina illiaca 10mm 2mm

Femur heads 6-8mm 3mm

Bladder 20-30mm 10mm

Coccygeum 10mm 6mm

Symphisis 10mm 2mm


