Shoring up the foundations of image analysis

Sir Michael Brady FRS FREng FMedSci Professor of Oncological Imaging
 Department of Oncology
 University of Oxford

The weakest link

- Fun stuff: deformable registration, motion estimation, segmentation
- Mathematical heroics
- Let someone else worry about signal \& image analysis, physics, all that jazz

Message of this talk: there is intelligent life in the basement, and it makes a difference!

Overview

- Features
- local phase, phase congruency
- MR/US registration, cell segmentation, vascular segmentation, ...
- Texture
- Fractal dimension on Riesz transform
- Staging liver disease
- Uncertainty
- Histograms \& Shannon - NP Windows
- Entropy, mutual information
- Shape
- Integral invariants and eccentricity transform
- Mammography segmentation and deformable registration
- ... and a postscript

The feature zoo

- There is more to images than steps
- They are relatively rare in medical images
- ..but most feature detectors are specialised for steps

Task: segment these HeLa cells, and identify the nuclei

Task: separate the vascular \& bile structures from fibrosis

... which begs the questions

- Is there a mathematical definition of a feature, to replace this phenomenological view?
- Most proposals have concentrated on $\left|\nabla^{n}\right| \mid \ldots$
- There have been formal definitions available for over 30 years
- The (medical) image analysis has largely ignored them
- Does "texture" form part of being a feature, or is it something that is derivative, as a collection of features?
- David Marr argued that "texture" can be defined as first-order statistical distributions over "zero crossings" of the Laplacian of a Gaussian (isotropic) filter
- Bela Julesz argued for the primacy of texture, with "texton" receptors, that are learned.

A case study: the Canny edge detector*

- Blur the image with a Gaussian
- Estimate d/dx, d/dy with finite differences
- Estimate the local gradient direction
- Perform non-maximum suppression
- Perform hysteresis thresholding
- Combine over scales: fine to coarse

Two examples of Canny

Breast MRI Task: segment the breast (\checkmark) and the ductal structures (X)

Liver MRI Task: segment the pancreas, ductal and bile
structures (X)

Canny assessment

- Most widely used edge detector for last 20 years
- Works well on steps, not on other features
- On steps, response determined by contrast because it uses intensity gradient
- Performs poorly on texture
- ... surely, we can do better?

Other proposals

- Marr's primal sketch
- Pre-determined zoo of features + feature fusion
- Never worked
- Anisotropic diffusion
- Still predominantly steps
- ... and energy of gradient
- Total variation
- Wavelet transform
- Decimated (Mallat): not shift invariant
- Complex (Kingsbury): fundamentally 1D signals

An alternative approach: local phase

Features and texture are characterised by their high frequencies in Fourier transform, discussed in psychophysics literature since 1920s

Constrast sensitivity to gratings, and application to texture, Campbell \& Robson, 1968

Windowed* FT (Gabor, 1950)

$W(f)(t, u)$
Chirp signal

Local frequency and phase

The importance of phase
 Oppenheim's demonstration

The Fourier Transform of a signal is complex valued: generates frequency \& phase

$$
\hat{I}_{1}(u, v)=\xrightarrow{P_{1}(u, v) e^{j \Phi_{1}(u, v)}}
$$

$$
\hat{I}_{3}(u, v)=P_{1}(u, v) e^{j \Phi_{2}(u, v)}
$$

$$
\mathrm{FFT}^{-1}
$$

Do you see: I_{1}, I_{2}, neither, or both?

Breast MRI

Breast energy; liver phase

Liver MRI

Breast phase; liver energy

Local phase ... of a signal

Bandpass to tame noise, say $b(t)$
Typically, $b(t)$ is an even filter, so we call it $b_{e}(t)$

The Hilbert Transform applied to $b_{e}(t)$ gives an odd filter $b_{o}(t)$

Then the local energy is $\sqrt{\left(f * b_{e}\right)^{2}+\left(f * b_{o}\right)^{2}}$ and the local phase is $\tan ^{-1}\left(\frac{\left(f * b_{o}\right)}{\left(f * b_{e}\right)}\right)$

We can do this for "almost any" even bandpass filter $b_{e}(t)$

Hilbert transform

Fourier transform $f(u)$

The Hilbert Transform* $f_{H}(t)$ of a function $f(t)$ is defined by:

$$
f_{H}(t)=\frac{1}{\pi}\left(f(t) *\left(\frac{1}{t}\right)\right)
$$

Since the Fourier transform of $\frac{1}{t}$ is the Heaviside step function $\operatorname{sgn}(u)$
We have: $\quad \hat{f}_{H}(u)=f(u) \cdot \operatorname{sgn}(u)$

Fourier transform of Hilbert transform $\hat{f}_{H}(u)$

FT of 1/t

The Fourier Transform of $\frac{1}{t}$ is $-j \operatorname{sgn}(u)$
Denote the FT of $\hat{f}(u)=\hat{f}_{r}(u)+j \hat{f}_{i}(u)$
so that $\hat{f}_{H}(u)=-j \operatorname{sgn}(u)\left(\hat{f}_{r}(u)+j \hat{f}_{i}(u)\right)$

$$
=\operatorname{sgn}(u)\left(\hat{f}_{i}(u)-\hat{j}_{r}(u)\right)
$$

and so

$$
\begin{aligned}
& \left(\hat{f}_{H}\right)_{1}=\hat{f}_{i} \\
& \left(\hat{f}_{H}\right)_{i}=-\hat{f}_{r}
\end{aligned}
$$

.. We can view this in a slightly different way

Hilbert transform rotates by $\pi / 2$ in the Fourier domain

Let $\hat{f}(u)=\hat{f}_{r}(u)+j \hat{f}_{i}(u)$, then

$$
\begin{aligned}
& \left(\hat{f}_{H}\right)_{i}=\hat{f}_{r} \\
& \left(\hat{f}_{H}\right)_{r}=-\hat{f}_{i}
\end{aligned}
$$

Recall rotation in the plane:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

In this case, $\theta=-\pi / 2 \ldots$ and for such a rotation we say that the filters are in quadrature (e.g. $\sin , \cos)$

Analytical Signal \& Hilbert Transform

Mathematic ally, the local properties (amplitude, phase) of a signal $f(t)$ are defined using the Analytic Signal $f_{A}(t)$:

$$
f_{A}(t)=f(t)-j f_{H}(t)
$$

where $f_{H}(t)$ is the Hilbert Transform of $f(t)$
We recall that in the Fourier domain, the Hilbert transform $\hat{f}_{H}(u)$
has the same magnitude as $f(u)$ but is rotated by $\frac{\pi}{2}$. This enables us to define
local energy $A(t)=\sqrt{f^{2}(t)+f_{H}^{2}(t)}$
local phase $\tan \phi(t)=\frac{f(t)}{f_{H}(t)}$

Quadrature filter pair

Frequency throws away key information

Analytic signal

Original signal FT of f
 Hilbert transform
 of f
 Analytic signal for f

No residual "negative frequencies..."
... well, that's signals sorted, now let's look at images

Local phase congruency

Phase, at any single scale is largely meaningless

Triangle (EVEN) pulse harmonics

Rectangle (ODD) pulse harmonics

A feature is defined as a point in an image (or signal) where the phases line up

Kovesi's implementation of phase congruency

Define: $\quad P C(t)=\frac{W(t)}{\varepsilon+\sum_{n} A_{n}(t)}$,

$$
\text { (typically } \varepsilon=0.01 \text {) }
$$

Two problems:

- The Hilbert Transform, and so Kovesi's implementation, only defined for 1D signals
- How do add phases and avoid phase wrap-around?

the monogenic signal

The convolution kernels h_{1}, h_{2} are shown on the next slide (Reisz transform).
The bandpass filters $\left\{b_{i}: i=1 . . n\right\}$ is the ONLY choice to be made aside from how to combine the results of the different scales
Note that $h_{j} * b_{i}$ can be computed in advance, further speeding computation

Monogenic triple of filters

Bandpass filter b
$h_{1}{ }^{*} b$
$h_{2}{ }^{*} b$
This is even
h_{l}, h_{2} provide the quadrature required for local phase estimation
A key choice is the bandpass filter. Choices include difference of
Gaussians, Gabor, log Gabor. Mellor and Brady have developed a family of rotationally-symmetric, scale-robust, linear bandpass filters (PAMI 2008)

Riesz filters

Riesz filter: $\mathbf{V}_{\mathbf{1}}(\mathbf{u})$

Riesz filter: $\mathbf{V}_{\mathbf{2}}(\mathbf{u})$

Local energy, local phase

Bandpass filter is Mellor-Brady

Local energy

Note contrast variance

Local phase

Negligible contrast variance
R. Ali, M. Gooding, T. Szilagyi, M. Christlieb, M. Brady,
"Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images",

Segmentation superimposed on a Zn-ATSM fluorescent image

Segmented cells from monogenic signal features integrated into a level set segmentation algorithm
Brightfield confocal microscope image of clusters of touching HeLa* cells

Vascular segmentation in non-alcoholic steahepatitis

T_{2}

weighted images

MRI analysis using DOG* (bandpass) filter

The images are phase estimated using monogenic signal

* Difference of Gaussians

3D ultrasound phase estimation using DOG filter

MRI-ultrasound image fusion

Phase-based image fusion based on the monogenic signal

Similarity from (local) phase mutual information

Pre-Treatment Image with Manually Identified control points

Post-Treatment Image with Manually Identified control points

Local Phase (Pre)

Local Phase (Post)

Warped Post-Treatment Image

Grid

Intensity PDF vs Phase PDF

Pre-Treatment

Intensity PDF: pre

Post NP Window Estimated PDF

Intensity PDF: post

Local Phase PDF: pre

Local Phase PDF: post

In both cases, intensity and local phase, we estimate PDF using NP windows

Resampling MR images from Riesz components

Axial view

Coronal view

Sagittal view

segmentation
of the bladder

Chi, Brady, and Schnabel, 2013

Often, we have images in all 3 directions...

Chi, Brady, and Schnabel, 2013

For "congruence", how do you combine local phases?

The big problem is phase wrapping: $(\pi+\alpha)+(\pi-\beta)=(\alpha-\beta)$
This impacts on every method (such as Kovesi's) for weighted sums of phases over scale (amplitude weighted, Riesz weighted, ...)

$$
\begin{aligned}
& \text { Let } \mathbf{a}=|\mathbf{a}| \cos \theta_{a}+j|\mathbf{a}| \sin \theta_{a} \text { and } \mathbf{b}=|\mathbf{b}| \cos \theta_{b}+j|\mathbf{b}| \sin \theta_{b} \\
& \text { We want }:\left(\theta_{a}+\theta_{b}\right) / 2
\end{aligned}
$$

Is there an intelligent way to address this problem? YES: geometric algebra
Build from the basis using geometric products:

$$
\left\{1, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{12}, \mathbf{e}_{13}, \mathbf{e}_{23}, \mathbf{e}_{123}\right\}
$$

For two vectors \mathbf{a}, \mathbf{b} of "grade" 1 ,

$$
\begin{aligned}
& \mathbf{a b}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \wedge \mathbf{b} \\
& \mathbf{a b}=|\mathbf{a}||\mathbf{b}| \cos \left(\theta_{a}+\theta_{b}\right)+\mathbf{e}_{1}|\mathbf{a}||\mathbf{b}| \sin \left(\theta_{a}+\theta_{b}\right)
\end{aligned}
$$

A phase wrapping algorithm

First, De Moivre's theorem: $\quad \cos \theta+j \sin \theta=(\cos \{n \theta\}+j \sin \{n \theta\})^{1 / n}$

So take square root of the geometric product ab to get $\left(\theta_{a}+\theta_{b}\right) / 2$
Suppose we write the monogenic signals as

$$
\left\{\mathbf{m}_{k}: k=1, \ldots, \mathrm{n}\right\} \text { each } \mathbf{m}_{k} \text { is a 3-vector }
$$

Then:

$$
L P_{\text {mean }}=\arg \left(\sqrt[n]{\prod_{k=1}^{n} \mathbf{m}_{k}}\right)
$$

- This does not require the monogenic signals to have the same amplitudes (they rarely do)
- Normalisation is not necessary
- The number of operations required to implement this is $4(n-1)$ - fast!!

A regular texture

bettertogether $\stackrel{\mid}{\mid} \stackrel{1}{\mid}$

Monogenic assumes a single orientation at each image location

Suppose that f_{u}, f_{v} are the Riesz components at any given image location.
The local orientation in the monogenic signal is given by $\tan \theta=\left(f_{v} / f_{u}\right)$
This defines a single orientation, and intrinsically loses information
In textures, we often have multiple orientations at each point

A simple texture: the sum of two sinusoids

For texture analysis, use Riesz components

Riesz component weighting for phase congruency

Let the Riesz components be denoted: $R_{1}\left(s_{k}\right), R_{2}\left(s_{k}\right)$, scale s_{k} The Riesz weighted phase measure is:

$$
\operatorname{LP}_{\text {Riesz }}(\mathbf{x})=\frac{\sum_{s_{k}=1}^{n}\left(\max _{s_{k}}\left|R_{1}\left(s_{k}\right)(\mathbf{x})\right|+\max _{s_{k}}\left|R_{2}\left(s_{k}\right)(\mathbf{x})\right|\right) \cdot \phi\left(\mathbf{x}, s_{k}\right)}{\sum_{s_{k}=1}^{n}\left(\max _{s_{k}}\left|R_{1}\left(s_{k}\right)(\mathbf{x})\right|+\max _{s_{k}}\left|R_{2}\left(s_{k}\right)(\mathbf{x})\right|\right)}
$$

Breast MRI

Kovesi PC

Riesz-weighted PC

Riesz components for texture

Kovesi's energy weighted PC

Riesz - Energy
the difference is most pronounced in the texture that is of interest

Riesz weighted PC

Staging liver disease: primary sclerosing cholangitis

Appearance	Ishak stage: Categorical description		Ishak stage: Categorical assignment
	No fibrosis (normal)		0
$\%$	Fibrous expansion of some portal reas +/- short fibrous septa	을	1
	Fibrous expansion of most portal areas + - short fibrous septa		2
	Fibrous expansion of most portal areas with occasional portal to portal (P-P) bridging	$\frac{1}{0}$	Γ^{3}
	Fibrous expansion of portal areas with marked bridging (portal to portal (P-P) as well as portal to central (P-C))	¢	4
	Marked bridging (P-P and/or P-C), with occasional nodules (incomplete cirrhosis)		Γ^{5}
	Cirrhosis, probable or definite	$\stackrel{\text { T }}{\substack{11}}$	6

Ishak grade 4: severe disease

Ishak grade 0: healthy

Ishak grades

Grade 2

Grade 3

Grade 4

Towards automated Ishak scoring

Ishak 0: healthy

Ishak 4: severe disease

phase

phase

Feature asymmetry

Feature asymmetry

Liver texture analysis

Correlation with pathology, $r=0.967$
The texture features we have experimented with to date include:

- Fractal dimension
\checkmark
- Entropy
- Clumpedness

X

- Laws filters

X

Uncertainty is ubiquitous in signal/image analysis

Comparison of various PDF estimates

Test image

Kernel estimator With optimal bandwidth

$\mathrm{T}=180$ seconds, Bandwidth $=1.79$

Histogram

Kernel estimator

Computational
efficiency

Accurate estimate

What's the root of the problem?

Two images that seem to be dissimilar...

Their histograms are identical ... and so are their kernel density estimators!

- Estimators based on population statistics ignore the order of samples in a signal or image
- Order is important in a signal!! And, signals are critically band-limited
- Choosing a suitable interpolation scheme, we can form a continuous version of the signal/image, and, from this, derive a superior PDF estimate ...quickly!!

..if you do take sample order into account

Now they are clearly distinguished! Here the PDFs are derived using NP Windows.

Kadir and Brady 2004; Joshi and Brady, 2007, 2008, and IJCV 2009, in press; Dowson, Kadir, and Bowden PAMI 2008

NP windows

a portion of a signal:

$$
y(x)=a x+b, 0 \leq x \leq 1
$$

The transformation formula:

Linear interpolation \rightarrow uniform distribution. Other interpolation is possible, of course

From signal to PDF
Calculate PDF of each piecewise linear section, using the Transformation Formula, and superpose them

This extends readily to 2D, 3D,

Comparison of various PDF estimates

Test image

Kernel estimator With optimal bandwidth

Histogram

Ground Truth

Histogram of highly upsampled version
T=30 milliseconds of the test image

Mesorectal fascia segmentation

Cyan coloured contour: Hand-drawn by clinical expert

Yellow coloured contour: Our algorithm

Tissue class segmentation

Green: lumen
Red: rectum/ tumour

Blue: mesorectum

Does NP Windows really make a difference to the calculation of entropy?

Histogram on 3X3 window

NPW on 5X5 window

Histogram on 5X5 window
 there are no parameters to set!! Typical compute time $=35 \mathrm{~ms}$ for a 128 X 128 image

Matching shapes

Shape matching

- Task: match shapes, noting significant difference
- Disease progression; response to therapy; imaging conditions..
- Shape descriptors
- Boundary \& interior contain complementary information - use both
- Boundary
- Robust to noise, errors in segmentation, ..
- Need to align "key" points: scale space
- Invariant to articulations
- Interior
- Geodesics between points
- Fast marching algorithm
- Fusion of boundary and interior

Shape matching

Two of Kimia's dude shapes

Left: a CC/MLO pair of density maps output from Volpara

Right: match of the contours using integral invariants and fast-marching algorithm
Robustness to articulation differences rules out projective* \& algebraic invariants

Differential invariants?

(a) A rectangular shape.

(c) Curvature of (a).

(b) A rectangular shape with noise.

(d) Curvature of (b).

- Differential invariants are based on $2^{\text {nd }}$ plus order derivatives, so VERY prone to noise...
- Less well known are integral invariants ... but they have substantial advantages, and they are fast to compute

Integral invariants

Integral invariants are resistant to noise

Integral Invariants

The value at each point along the curve is the intersection of the circle with the shape

Increasing the radius of the shape defines a scale space

Curve C, point $p \in C$. Integral invariant at scale r is

$$
I_{r}(p)=\int_{\Omega} \chi\left(B_{r}(p), C\right)(x) d x
$$

where Ω is domain (C), and

$$
\chi\left(B_{r}(p), C\right)(x)=\left\{\begin{array}{cc}
1 & x \in B_{r}(p) \cap \operatorname{Int}(C) \\
0 & \text { otherwise }
\end{array}\right.
$$

Simple shape

Outline of a spiculated mass

Integral invariant

Integral invariant - a signature

Example

Two shapes; the red one has an occlusion (not an amputation)

Correspondences shown as black lines

Results for Kimia's database of shapes

0.29	0.49	2.41	1.81	2.66	3.34	4.07	4.41	4.10	3.59

Results for Kimia's database of shapes
$\pi n \rightarrow m \times x>y$

Good news!!! Fish do not resemble mammals

Encoding the shape interior depends on geodesic distance

Geodesic distance tells how far two points in a shape are, in particular how far apart two points on the boundary $\partial \mathrm{C}$ are - enabling combination with the integral invariants

Euclidean distance

Geodesic
distances from
Fast Marching
Algorithm

Example geodesic paths

Eccentricity transform

Let x, y be points on a curve C. The eccentricity transform

$$
\operatorname{Ecc}_{C}(x)=\max _{y \in \partial C} d_{C}(x, y)
$$

where $d_{C}(x, y)=U(x)$ is computed from the solution to the Eikonal equation: $\quad \forall x \in C,|\nabla U(x)|=1 ; \quad U(0)=0$

The Fast Marching Algorithm can be used to compute this solution

Temporal evolution of the FMA

Matching temporal mammograms

Temporal pairs from the Elizabeth Wende clinic, NY

Detecting mismatched portions of the shape

 occlusions and new growths

False positive reduction in mass segmentation

TP

Intensity profile scale space of a certain region

$$
\begin{aligned}
& T_{i}=\left(\sum_{p=1}^{l}\left(\frac{C_{i}^{1}(p)-C_{i}^{k}(p)}{\text { length of } C_{i}^{1}}\right)\right) * \frac{\bar{D}_{i}}{D_{B}} * \\
& \left(D_{i}^{1}-D_{i}^{k}\right) \\
& \quad \text { where } D_{i}^{r}=\operatorname{abs}\left(\max \left(C_{i}^{r}\right)-\right.
\end{aligned}
$$

False positive reduction

Automated segmentation of a mammogram, no FP reduction

"ground truth" and the ROI boundary after FP reduction

Conclusions

... but allow me add a postscript

... commercial exploitation

volpara
density
Automated breast density ${ }^{\text {™ }}$

volpara
and Hica
Imaging performance metrics ${ }^{\text {¹w }}$

v

volpara
doseRT
Patient-specific dose and pressure add-on to VolparaDensity

MIBADA $\boldsymbol{\rightarrow}$
 Fusion7D

PET-CT image fusion. Upper left: CT; lower left FDG-PET; upper right PET fused with CT by non-rigidly registering the PET data to the coordinate frame of the CT. This snapshot is from the Siemens TrueD workstation, courtesy Dr. Jérôme Declerck, Chief Scientist, Siemens Molecular Imaging, Advanced Applications Laboratory, Oxford.

Tri-modal fusion: PET, CT, MRI

Key
CT in Grayscale
PET in Purple/White MR in Red/Brown

- Software based PET-MR fusion
- Data from hybrid PET/CT and stand-alone MR scanners
- Doesn't require new hardware

Quantifying disease/therapy progression

7 time-point PET/CT of the same patient

Volume

Radiotherapy planning/monitoring

Dose deformation and summation...

Adaptive re-planning

MIRADA
medical

The looming pandemic

36% of US population is obese
24\% UK population

In 2008, 170 million of the world's children were obese 20% EU kids and rising fast

The world's favourite foods

Hepatitis C

- Cirrhosis, hepatocellular carcinoma, ... metabolic syndrome,
- Surge in (non-alcoholic) fatty liver disease and NASH
- 30\% Western population has liver disease - ill defined
- Dame Sally Davies: liver disease is THE main priority
- Leading cause of liver transplant by 2020
- Desperate need for (imaging) biomarkers for drug trials

Fatty liver disease in numbers

2000: 155 million
2030: 357 million
Massive growth in BRIC countries

What happens if liver disease is suspected?

- Biopsy with a 20 cm needle
> ... is painful, costly ($\$ 1 \mathrm{~K}$ - rising to $\$ 4 \mathrm{~K}$ in cases of complications)
$>\ldots$ has a $1-2 \%$ risk of significant bleeding and 0.1% risk of death
> \ldots and samples 0.02% of the 2.5 Kg liver

Perspectum

Normal and post-pancreatitis patients

In liver, normal T1 is <810 milliseconds. Both patients here have normal liver T1.

Patient on left has presumed normal pancreas, with low T1 (blue = normal). Patient on right is being investigated for suspected gallstone pancreatitis (2 admissions in last 6/52), and has much higher pancreatic T1, approx 1050 milliseconds (green suggests \uparrow extracellular fluid). Need for physics-based fusion: T1,T2*,Dixon

Why image fusion?

Average T1 is 817 ms - which is reassuringly normal

... but the T2* image shows massive iron content (too much red wine)
... after image fusion of T1, T2*, Dixon, the corrected T1 is 959 ms , indicative of severe disease - confirmed on biopsy.

Staging patients with chronic disease
cT1 vs Ishak stage for all subjects $(n=84)$

Multiparametric Magnetic Resonance for the non-invasive diagnosis of liver disease. Banerjee R et al, J Hepatol. 2013

Superior algorithms using multi-view context

Breast CAD company, jointly with Nico Karssemeijer, based largely on his work over the past 20 years...

File	Case		Navigation			Image Display		
(3)	01000351 v	©	MLO	prev	overview	Zoom	+3 V	MPres Settings
(0) (1)	blank 01000351	아	CC	next	8 Views \checkmark	Reset	Exam based	MPres

Strabismus affects 4% of children throughout the world - incidence is essentially same everywhere - that means millions of children who could benefit from screening....

From data to information ...via the cloud

3-way collaboration

The messages of MISS

- There is lots of wonderful science to work on
- There are many clinical problems that need addressing
- There is too much about disease that we do not understand
- There can be a symbiotic relationship between academia and industry
- Progress demands the commitment of brilliant young scientists ...

20 things to work on*

1. Estimate if fat is a biomarker for cancer
2. Develop a method for the combination of mammo, breast MRI and US
3. Use 2 to develop a decision support system to integrate into the tumour board's workflow
4. Develop a model-based framework for the fusion of dPET and dceMRI
5. Apply 4 to colorectal and liver cancer
6. Determine how to uncover masked tumours in mammography
7. From CT and PET develop a method for mesothelioma
8. Develop an MRI based method to support clinical assessment of endometriosis
9. Develop spatiotemporally regularised dynamic PET
10. Combine non-rigid registration and pictorial structure matching in a robust, accurate non-rigid registration algorithm for jointed structures (spine, ribcage, ...)
11. Develop existing hypoxia model to incorporate additional up-stream pathways, eg RAS
12. Extend the hypoxia \& glycolysis models to incorporate angiogenesis
13. Develop a model of the effect of chemotherapy on the tumour microenvironment \& implications for image analysis
14. Develop a model like 3 for radiotherapy, and combine with 3 to model their fruitful combination
15. Explore further the Pancreatic Stellate Cell conjecture
16. Model mathematically and computationally micrometastases, relate to Muschel's recent expt work
17. Explore further the tumour growth model described in the lecture
18. Show that microcalcifications and masses can be assigned malignant/benign on the basis of spectroscopic data
19. Extend current techniques for hyperpolarised MRI to detect mesothelioma
20. Extend Hoffman's work on MR-based attenuation correction to dPET \& dceMRI

Whole Body Oncology More Challenging Than Single Organs

Landmark Localization
 Using Parts-Based Graphical Models

Database

Learning

Parts-Based Model

Local Tissue
Appearance

Anatomical
Relations

C2 vertebra
C7 vertebra
top of the sternum
top right lung
top left lung
aortic arch
carina
lowest point of sternum (ribs)
lowest point of sternum (tip)
Th12 vertebra
top right kidney
bottom right kidney
top left kidney
bottom left kidney
L5 vertebra
right spina iliaca anterior superior
left spina iliaca anterior superior
right head of femur
left head of femur
symphysis
os coccygeum
center of bladder

Adding landmarks

Initial (green) enriched with B-Landmarks (blue)
Initially, the additional landmarks (Beacons) were inferred from the population average, more recently personalised by selecting only the most relevant patient exemplars

Personalized PS outperforms standard GMs

... 2-5x more repeatable than clinician

Good	Clinician Error	Algorithm Error (2mm voxels)
Vertebraes	$6-10 \mathrm{~mm}$	$2-6 \mathrm{~mm}$
Top lung	10 mm	$3-4 \mathrm{~mm}$
Kidney tips	10 mm	$3-4 \mathrm{~mm}$
Aortic arch	$10-20 \mathrm{~mm}$	7 mm
Carina	6 mm	2 mm
Sternum (top-low)	$10-20 \mathrm{~mm}$	$3 \mathrm{~mm}-8 \mathrm{~mm}$
Spina illiaca	10 mm	2 mm
Femur heads	$6-8 \mathrm{~mm}$	3 mm
Bladder	$20-30 \mathrm{~mm}$	10 mm
Coccygeum	10 mm	6 mm
Symphisis	10 mm	2 mm

