Shoring up the foundations of image analysis

Sir Michael Brady FRS FREng FMedSci Professor of Oncological Imaging Department of Oncology University of Oxford

The weakest link

- Fun stuff: deformable registration, motion estimation, segmentation
- Mathematical heroics
- Let someone else worry about signal & image analysis, physics, all that jazz

Message of this talk: there is intelligent life in the basement, and it makes a difference!

Overview

• Features

- local phase, phase congruency
- MR/US registration, cell segmentation, vascular segmentation, ...

• Texture

- Fractal dimension on Riesz transform
- Staging liver disease
- Uncertainty
 - Histograms & Shannon NP Windows
 - Entropy, mutual information
- Shape
 - Integral invariants and eccentricity transform
 - Mammography segmentation and deformable registration
- ... and a postscript

The feature zoo

- There is more to images than steps
- They are relatively rare in medical images
- ..but most feature detectors are specialised for steps

Task: segment these HeLa cells, and identify the nuclei

Steps of varying contrast Thin lines Localised "blob"s Corners of varying angle

Task: separate the vascular & bile structures from fibrosis

... which begs the questions

- Is there a mathematical definition of a feature, to replace this phenomenological view?
 - Most proposals have concentrated on $|\nabla^n I|$...
 - There have been formal definitions available for over 30 years
 - The (medical) image analysis has largely ignored them
- Does "texture" form part of being a feature, or is it something that is derivative, as a collection of features?
 - David Marr argued that "texture" can be defined as first-order statistical distributions over "zero crossings" of the Laplacian of a Gaussian (isotropic) filter
 - Bela Julesz argued for the primacy of texture, with "texton" receptors, that are learned.

A case study: the Canny edge detector*

- Blur the image with a Gaussian
- Estimate d/dx, d/dy with finite differences
- Estimate the local gradient direction
- Perform non-maximum suppression
- Perform hysteresis thresholding
- Combine over scales: fine to coarse

Two examples of Canny

Breast MRI Task: segment the breast (✓) and the ductal structures (X)

Liver MRI Task: segment the pancreas, ductal and bile structures (X)

Canny assessment

- Most widely used edge detector for last 20 years
- Works well on steps, not on other features
- On steps, response determined by contrast because it uses intensity gradient
- Performs poorly on texture
- ... surely, we can do better?

Other proposals

- Marr's *primal sketch*
 - Pre-determined zoo of features + feature fusion
 - Never worked
- Anisotropic diffusion
 - Still predominantly steps
 - -... and energy of gradient
 - Total variation
- Wavelet transform
 - Decimated (Mallat): not shift invariant
 - Complex (Kingsbury): fundamentally 1D signals

An alternative approach: local phase

Features and texture are characterised by their high frequencies in Fourier transform, discussed in psychophysics literature since 1920s

Constrast sensitivity to gratings, and application to texture, Campbell & Robson, 1968

Windowed* FT (Gabor, 1950)

The importance of phase

Oppenheim's demonstration

The Fourier Transform of a signal is complex valued: generates frequency & phase

Breast MRI

Liver MRI

Breast energy; liver phase

Breast phase; liver energy

Local phase ... of a signal

Bandpass to tame noise, say b(t)

Typically, b(t) is an even filter, so we call it $b_e(t)$

The Hilbert Transform applied to $b_e(t)$ gives an odd filter $b_o(t)$

Then the local energy is
$$\sqrt{(f * b_e)^2 + (f * b_o)^2}$$
 and
the local phase is $\tan^{-1}\left(\frac{(f * b_o)}{(f * b_e)}\right)$

We can do this for "almost any" even bandpass filter $b_e(t)$

Hilbert transform

Fourier transform f(u)

The *Hilbert Transform* $^*f_H(t)$ of a function f(t) is defined by:

$$f_H(t) = \frac{1}{\pi} \left(f(t) * \left(\frac{1}{t}\right) \right)$$

Since the Fourier transform of $\frac{1}{t}$ is the Heaviside

step function sgn(u)

We have: $\hat{f}_H(u) = f(u) \cdot \operatorname{sgn}(u)$

Fourier transform of Hilbert

transform $\hat{f}_H(u)$

*see Bracewell, Fourier Transform and its Applications

FT of 1/t

The Fourier Transform of $\frac{1}{t}$ is -j sgn(u)Denote the FT of $\hat{f}(u) = \hat{f}_r(u) + j\hat{f}_i(u)$ so that $\hat{f}_H(u) = -j$ sgn $(u)(\hat{f}_r(u) + j\hat{f}_i(u))$ $= \text{sgn}(u)(\hat{f}_i(u) - j\hat{f}_r(u))$

and so

$$\begin{pmatrix} \hat{f}_H \end{pmatrix}_r = \hat{f}_i \\ (\hat{f}_H)_i = -\hat{f}_r$$

.. We can view this in a slightly different way

Hilbert transform rotates by $\pi/2$ in the Fourier domain

Let
$$\hat{f}(u) = \hat{f}_r(u) + j\hat{f}_i(u)$$
, then
 $(\hat{f}_H)_i = \hat{f}_r$
 $(\hat{f}_H)_r = -\hat{f}_i$

X

Recall rotation in the plane: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

In this case, $\theta = -\pi/2$ and for such a rotation we say that the filters are in quadrature (e.g. sin, cos)

Analytical Signal & Hilbert Transform

Mathematic ally, the local properties (amplitude, phase) of a signal f(t) are defined using the *Analytic Signal* $f_A(t)$:

$$f_A(t) = f(t) - jf_H(t)$$

where $f_H(t)$ is the Hilbert Transform of f(t)

- We recall that in the Fourier domain, the Hilbert transform $\hat{f}_H(u)$
- has the same magnitude as f(u) but is rotated by $\frac{\pi}{2}$. This enables us to

define

local energy
$$A(t) = \sqrt{f^2(t) + f_H^2(t)}$$

local phase $\tan \phi(t) = \frac{f(t)}{f_H(t)}$

Quadrature filter pair

Frequency throws away key information

Analytic signal

No residual "negative frequencies..."

... well, that's signals sorted, now let's look at images

A feature is *defined* as a point in an image (or signal) where the phases line up

Kovesi's implementation of phase congruency

Define:

$$PC(t) = \frac{W(t)}{\varepsilon + \sum_{n} A_{n}(t)},$$

(typically $\varepsilon = 0.01$)

Two problems:

- The Hilbert Transform, and so Kovesi's implementation, only defined for 1D signals
- How do add phases and avoid phase wrap-around?

The convolution kernels h_1, h_2 are shown on the next slide (Reisz transform). The bandpass filters $\{b_i \ i = 1..n\}$ is the ONLY choice to be made aside from how to combine the results of the different scales Note that $h_i * b_i$ can be computed in advance, further speeding computation

Monogenic triple of filters

Bandpass filter b $h_1 * b$ $h_2 * b$ This is evenoddodd & quadrature pair to h1 * b

 h_1, h_2 provide the quadrature required for local phase estimation

A key choice is the bandpass filter. Choices include difference of Gaussians, Gabor, log Gabor. Mellor and Brady have developed a family of rotationally-symmetric, scale-robust, linear bandpass filters (PAMI 2008)

Local energy, local phase

Bandpass filter is Mellor-Brady

Local energy

Note contrast variance

Local phase

Negligible contrast variance Brightfield confocal microscope image of clusters of touching HeLa* cells

R. Ali, M. Gooding, T. Szilagyi, M. Christlieb, M. Brady, "Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images", Machine Vision and Applications, April 2011

Segmentation superimposed on a Zn-ATSM fluorescent image

Segmented cells from monogenic signal features integrated into a level set segmentation algorithm

*HeLa is an immortal cell line, first taken from Henrietta Lacks, who died of cervical cancer in 1951

Vascular segmentation in non-alcoholic steahepatitis

T₂* weighted images

MRI analysis using DOG* (bandpass) filter

MRI image of a slice of the heart

$$DOG(u) = \exp\left(-\frac{\sigma_1^2 u^2}{2}\right) - \exp\left(-\frac{\sigma_2^2 u^2}{2}\right)$$

 $\frac{\sigma_1}{\sigma_2} = \gamma$, in this case : $\gamma < 0.1$

The images are phase estimated using monogenic signal

* Difference of Gaussians

3D ultrasound phase estimation using DOG filter

Slice of 3D ultrasound of the heart

$\gamma < 0.1$, filter spans 3.5 octaves

Zhang Wei Wei, Noble, and Brady, IPMI 2005

MRI-ultrasound image fusion

Intensity based image fusion

Phase-based image fusion based on the monogenic signal

Similarity from (local) phase mutual information

Pre-Treatment Image with Manually Identified control points

Post-Treatment Image with Manually Identified control points

Local Phase (Pre)

Local Phase (Post)

Warped Post-Treatment Image

Grid

Intensity PDF vs Phase PDF

Pre-Treatment

Post-Treatment

Intensity PDF: pre

Local Phase PDF: pre

In both cases, intensity and local phase, we estimate PDF using NP windows Mellor & Brady, Medical Image Analysis, 2005

Resampling MR images from Riesz components

Axial view

Sagittal view

3D segmentation of the bladder

Chi, Brady, and Schnabel, 2013

Coronal view

Often, we have images in all 3 directions...

Chi, Brady, and Schnabel, 2013

For "congruence", how do you combine local phases?

The big problem is *phase wrapping*: $(\pi+\alpha)+(\pi-\beta)=(\alpha-\beta)$

This impacts on every method (such as Kovesi's) for weighted sums of phases over scale (amplitude weighted, Riesz weighted, ...)

Let $\mathbf{a} = |\mathbf{a}| \cos \theta_a + j |\mathbf{a}| \sin \theta_a$ and $\mathbf{b} = |\mathbf{b}| \cos \theta_b + j |\mathbf{b}| \sin \theta_b$ We want : $(\theta_a + \theta_b) / 2$

Is there an intelligent way to address this problem? YES: geometric algebra

Build from the basis using geometric products:

$$\{1, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{12}, \mathbf{e}_{13}, \mathbf{e}_{23}, \mathbf{e}_{123}\}$$

For two vectors \mathbf{a}, \mathbf{b} of "grade" 1,
 $\mathbf{a}\mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b}$
 $\mathbf{a}\mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta_{a} + \theta_{b}) + \mathbf{e}_{1} |\mathbf{a}| |\mathbf{b}| \sin(\theta_{a} + \theta_{b})$

...nearly!

A phase wrapping algorithm

First, De Moivre's theorem: $\cos\theta + j\sin\theta = (\cos\{n\theta\} + j\sin\{n\theta\})^{1/n}$

So take square root of the geometric product **ab** to get $(\theta_a + \theta_b)/2$

Suppose we write the monogenic signals as $\{\mathbf{m}_k : k = 1,...,n\}$ each \mathbf{m}_k is a 3-vector Then:

$$LP_{mean} = \arg\left(\sqrt[n]{\prod_{k=1}^{n} \mathbf{m}_{k}}\right)$$

- This does not require the monogenic signals to have the same amplitudes (they rarely do)
- Normalisation is not necessary
- The number of operations required to implement this is 4(n-1) fast!!
A regular texture

Monogenic assumes a single orientation at each image location

Suppose that f_u , f_v are the Riesz components at any given image location. The local orientation in the monogenic signal is given by $\tan \theta = (f_v / f_u)$ This defines a single orientation, and intrinsically loses information In textures, we often have multiple orientations at each point

A simple texture: the sum of two sinusoids

For texture analysis, use Riesz components

Riesz component weighting for phase congruency Let the Riesz components be denoted: $R_1(s_k), R_2(s_k)$, scale s_k The Riesz weighted phase measure is:

$$LP_{Riesz}\left(\mathbf{x}\right) = \frac{\sum_{s_{k}=1}^{n} \left(\max_{s_{k}} \left|R_{1}(s_{k})(\mathbf{x})\right| + \max_{s_{k}} \left|R_{2}(s_{k})(\mathbf{x})\right|\right) \phi(\mathbf{x}, s_{k})}{\sum_{s_{k}=1}^{n} \left(\max_{s_{k}} \left|R_{1}(s_{k})(\mathbf{x})\right| + \max_{s_{k}} \left|R_{2}(s_{k})(\mathbf{x})\right|\right)}$$

Breast MRI

Kovesi PC

Riesz-weighted PC

Riesz components for texture

Kovesi's energy weighted PC

Riesz weighted PC

Riesz – Energy

the difference is most pronounced in the texture that is of interest

Staging liver disease: primary sclerosing cholangitis

Appearance	Ishak stage: Categorical description	Ishak stage: Categorical assignment D		
	No fibrosis (normal)			
** * *	Fibrous expansion of some portal reas +/- short fibrous septa	mild	1	
	Fibrous expansion of most portal areas +/- short fibrous septa		2	
the for	Fibrous expansion of most portal areas with occasional portal to portal (P-P) bridging	ere	3	
Silv.	Fibrous expansion of portal areas with marked bridging (portal to portal (P-P) as well as portal to central (P-C))	sev	4	
Sit-	Marked bridging (P-P and/or P-C), with occasional nodules (incomplete cirrhosis)	evere	5	
OK4	Cirrhosis, probable or definite	very s	6	

Ishak grade 0: healthy

Ishak grades

Grade 2

Grade 3

Grade 4

Towards automated Ishak scoring

Ishak 0: healthy

phase

Feature asymmetry

Ishak 4: severe disease

Feature asymmetry

phase

Liver texture analysis

Х

The texture features we have experimented with to date include:

- Fractal dimension
- Entropy X
- Clumpedness
- Laws filters

Uncertainty is ubiquitous in signal/image analysis

Comparison of various PDF estimates

Test image

Histogram

Kernel estimator

Kernel estimator With optimal bandwidth

What's the root of the problem?

Two images that seem to be dissimilar...

Their histograms are identical ... and so are their kernel density estimators!

- Estimators based on population statistics *ignore* the order of samples in a signal or image
- Order is important in a signal!! And, signals are critically band-limited
- Choosing a suitable interpolation scheme, we can form a *continuous* version of the signal/image, and, from this, derive a superior PDF estimate ...quickly!!

.. if you do take sample order into account

Now they are clearly distinguished! Here the PDFs are derived using NP Windows.

Kadir and Brady 2004; Joshi and Brady, 2007, 2008, and IJCV 2009, in press; Dowson, Kadir, and Bowden PAMI 2008

NP windows

Linear interpolation → uniform distribution. Other interpolation is possible, of course

Calculate PDF of each piecewise linear section, using the Transformation Formula, and superpose them

This extends readily to 2D, 3D,

From signal to PDF

Kadir and Brady 2004; Joshi and Brady, 2007, 2008, and IJCV 2009, in press; Dowson, Kadir, and Bowden PAMI 2008

Comparison of various PDF estimates

Test image

Histogram

Kernel estimator

Kernel estimator With optimal bandwidth

Ground Truth

Histogram of highly upsampled version of the test image

Mesorectal fascia segmentation

Cyan coloured contour: Hand-drawn by clinical expert

Yellow coloured contour: Our algorithm

Tissue class segmentation

Green: lumen

Red: rectum/ tumour

Blue: mesorectum

Does NP Windows really make a difference to the calculation of entropy?

NPW on 3X3 window

100

150

200

250

NPW on 5X5 window

Histogram on 5X5 window

Unlike kernel density estimators, there is no bandwidth parameter to optimise .. In fact, there are no parameters to set!! Typical compute time = 35ms for a 128X128 image

200

Matching shapes

Shape matching

- Task: match shapes, noting significant difference
 - Disease progression; response to therapy; imaging conditions..
- Shape descriptors
 - Boundary & interior contain complementary information use both
- Boundary
 - Robust to noise, errors in segmentation, ..
 - Need to align "key" points: scale space
 - Invariant to articulations
- Interior
 - Geodesics between points
- Fast marching algorithm
 - Fusion of boundary and interior

Shape matching

Two of Kimia's dude shapes

Left: a CC/MLO pair of density maps output from Volpara

Right: match of the contours using integral invariants and fast-marching algorithm

Robustness to articulation differences rules out projective* & algebraic invariants

*Except if combined with pictorial structures

Differential invariants?

- Differential invariants are based on 2nd plus order derivatives, so VERY prone to noise...
- Less well known are *integral* invariants ... but they have substantial advantages, and they are fast to compute

Integral invariants

Integral invariants are resistant to noise

Integral Invariants

The value at each point along the curve is the intersection of the circle with the shape

Increasing the radius of the shape defines a scale space

Curve *C*, point $p \in C$. Integral invariant at scale *r* is $I_r(p) = \int_{\Omega} \chi(B_r(p), C)(x) dx$ where Ω is domain(*C*), and

 $\chi(B_r(p),C)(x) = \begin{cases} 1 & x \in B_r(p) \cap \operatorname{Int}(C) \\ 0 & \text{otherwise} \end{cases}$

Simple shape

Outline of a spiculated mass

Integral invariant

Integral invariant – a signature

Example

Fast Marching Algorithm

Two shapes; the red one has an occlusion (not an amputation)

Correspondences shown as black lines

Results for Kimia's database of shapes

				77	7171	×,		×	×,	N,
	0.29	0.49	2.41	1.81	2.66	3.34	4.07	4.41	4.10	3.59
	0.49	0.24	2.16	2.03	2.28	3.67	4.15	4.24	3.95	3.91
	1.98	1.88	0.00	1.10	2.11	3.42	3.70	4.08	3.82	4.05
>	1.96	1.72	0.91	0.35	2.51	3.26	3.98	4.00	3.93	3.81
	2.82	2.40	2.24	2.64	0.31	3.91	4.11	4.88	4.42	5.00
$\mathbf{M}_{\mathbf{r}}$	3.71	3.65	3.17	3.24	3.85	0.17	0.88	2.61	1.97	1.90
\mathbf{x}	3.82	3.81	3.87	3.66	3.84	0.90	0.52	1.97	1.77	1.60
*	4.30	4.01	4.10	3.62	4.93	2.47	1.38	0.39	1.98	2.74
	3.67	3.47	3.78	3.58	4.45	1.53	1.90	2.15	0.79	0.99
X	3.98	4.11	4.38	3.48	4.63	1.85	1.32	2.05	1.25	0.61

Results for Kimia's database of shapes

A the second sec

Good news!!! Fish do not resemble mammals

Encoding the shape interior depends on geodesic distance

Geodesic distance tells how far two points in a shape are, in particular how far apart two points on the boundary ∂C are – enabling combination with the integral invariants

Euclidean distance

Geodesic distances from Fast Marching Algorithm Example geodesic paths

Eccentricity transform

Let x, y be points on a curve C. The eccentricity transform $Ecc_{C}(x) = \max_{y \in \partial C} d_{C}(x, y)$

where $d_C(x, y) \stackrel{\text{def}}{=} U(x)$ is computed from the solution to the Eikonal equation: $\forall x \in C, |\nabla U(x)| = 1; U(0) = 0$

The Fast Marching Algorithm can be used to compute this solution

Temporal evolution of the FMA

Matching temporal mammograms

Temporal pairs from the Elizabeth Wende clinic, NY

Detecting mismatched portions of the shape occlusions and new growths

False positive reduction in mass segmentation

Intensity profile scale space of a certain region

$$T_{i} = \left(\sum_{p=1}^{l} \left(\frac{C_{i}^{1}(p) - C_{i}^{k}(p)}{length of C_{i}^{1}}\right)\right) * \frac{\overline{D}_{i}}{D_{B}} * \left(D_{i}^{1} - D_{i}^{k}\right)$$
$$(D_{i}^{1} - D_{i}^{k})$$
$$where D_{i}^{r} = abs(max (C_{i}^{r}) - C_{i}^{k})$$

FP

False positive reduction

Automated segmentation of a mammogram, no FP reduction "ground truth" and the ROI boundary after FP reduction

Conclusions

... but allow me add a postscript

... commercial exploitation

PET-CT image fusion. Upper left: CT; lower left FDG-PET; upper right PET fused with CT by non-rigidly registering the PET data to the coordinate frame of the CT. This snapshot is from the Siemens TrueD workstation, courtesy Dr. Jérôme Declerck, Chief Scientist, Siemens Molecular Imaging, Advanced Applications Laboratory, Oxford.

All told, installed in over 2,000 hospitals world-wide

Oxford Eng Science + Siemens

MIRADA Tri-modal fusion: PET, CT, MRI

<u>Key</u> CT in Grayscale PET in Purple/White MR in Red/Brown

medical

- Software based PET-MR fusion
- Data from hybrid PET/CT and stand-alone MR scanners
- Doesn't require new hardware

2008

2009

Quantifying disease/therapy progression

7 time-point PET/CT of the same patient

Radiotherapy planning/monitoring

Dose deformation and summation...

Adaptive re-planning

The looming pandemic

36% of US population is obese 24% UK population

In 2008, 170 million of the world's children were obese 20% EU kids and rising fast

The world's favourite foods

Hepatitis C

Fatty liver disease in numbers

2000: 155 million 2030: 357 million

Massive growth in BRIC countries

Perspectum

 24% UK population 20% EU kids and rising fa
 Cirrhosis, hepatocellular carcinoma, ... metabolic syndrome,

- Surge in (non-alcoholic) fatty liver disease and NASH
- 30% Western population has liver disease – ill defined
- Dame Sally Davies: liver disease is THE main priority
- Leading cause of liver transplant by 2020
- Desperate need for (imaging) biomarkers for drug trials

What happens if liver disease is suspected?

- Biopsy with a 20cm needle
 - \succ ... is painful, costly (\$1K rising to \$4K in cases of complications)
 - > ... has a 1-2% risk of significant bleeding and 0.1% risk of death
 - ➤ ... and samples 0.02% of the 2.5Kg liver

Normal and post-pancreatitis patients

In liver, normal T1 is <810 milliseconds. Both patients here have normal liver T1.

Patient on **left** has presumed normal pancreas, with low T1 (blue = normal). Patient on **right** is being investigated for suspected gallstone pancreatitis (2 admissions in last 6/52), and has **much higher pancreatic T1**, approx 1050 milliseconds (green suggests ↑extracellular fluid). Need for physics-based fusion: T1,T2*,Dixon

Why image fusion?

Average T1 is 817ms – which is reassuringly normal

... but the T2* image shows massive iron content (too much red wine)

... after image fusion of T1, T2*, Dixon, the *corrected* T1 is 959ms, indicative of severe disease – confirmed on biopsy.

Ishak score: 6

Staging patients with chronic disease

Multiparametric Magnetic Resonance for the non-invasive diagnosis of liver disease. *Banerjee R et al,* J Hepatol. 2013

Right lobe T1: 1055ms

Superior algorithms using multi-view context

Breast CAD company, jointly with Nico Karssemeijer, based largely on his work over the past 20 years...

ScreenPoint

ScreenPoint

IRISS TECHNOLOGIES Detecting strabismus (squint)

Strabismus affects 4% of children throughout the world – incidence is essentially same everywhere – that means millions of children who could benefit from screening....

From data to information ...via the cloud

3-way collaboration

The messages of MISS

- There is lots of wonderful science to work
 on
- There are many clinical problems that
 need addressing
- There is too much about disease that we do not understand
- There can be a symbiotic relationship between academia and industry
- Progress demands the commitment of brilliant young scientists ...

20 things to work on*

- 1. Estimate if fat is a biomarker for cancer
- 2. Develop a method for the combination of mammo, breast MRI and US
- Use 2 to develop a decision support system to integrate into the tumour board's workflow
- 4. Develop a model-based framework for the fusion of dPET and dceMRI
- 5. Apply 4 to colorectal and liver cancer
- 6. Determine how to uncover masked tumours in mammography
- 7. From CT and PET develop a method for mesothelioma
- 8. Develop an MRI based method to support clinical assessment of endometriosis
- 9. Develop spatiotemporally regularised dynamic PET
- 10. Combine non-rigid registration and pictorial structure matching in a robust, accurate non-rigid registration algorithm for jointed structures (spine, ribcage, ...)
- 11. Develop existing hypoxia model to incorporate additional up-stream pathways, eg RAS

- 12. Extend the hypoxia & glycolysis models to incorporate angiogenesis
- Develop a model of the effect of chemotherapy on the tumour microenvironment & implications for image analysis
- 14. Develop a model like 3 for radiotherapy, and combine with 3 to model their fruitful combination
- 15. Explore further the Pancreatic Stellate Cell conjecture
- 16. Model mathematically and computationally micrometastases, relate to Muschel's recent expt work
- 17. Explore further the tumour growth model described in the lecture
- Show that microcalcifications and masses can be assigned malignant/benign on the basis of spectroscopic data
- 19. Extend current techniques for hyperpolarised MRI to detect mesothelioma
- 20. Extend Hoffman's work on MR-based attenuation correction to dPET & dceMRI

* We are, and there are lots more too.....

Whole Body Oncology More Challenging Than Single Organs

Patient 1

Patient 2

Patient 3

Patient 1

Patient 2

Patient 3

Landmark Localization Using Parts-Based Graphical Models

Parts-Based Model

Learning

C2 vertebra		
C7 vertebra		
top of the sternum		
top right lung		
top left lung		
aortic arch		
carina		
lowest point of sternum (ribs)		
lowest point of sternum (tip)		
Th12 vertebra		
top right kidney		
bottom right kidney		
top left kidney		
bottom left kidney		
L5 vertebra		
right spina iliaca anterior superior		
left spina iliaca anterior superior		
right head of femur		
left head of femur		
symphysis		
os coccygeum		
center of bladder		

Potesil, Kadir, Brady; IEEE TMI 2014; Potesil, Platsch, Kadir, Brady; IJCV 2014;

Personalized PS outperforms standard GMs

... 2-5x more repeatable than clinician

Good	Clinician Error	Algorithm Error (2mm voxels)
Vertebraes	6-10mm	2-6mm
Top lung	10mm	3-4mm
Kidney tips	10mm	3-4mm
Aortic arch	10-20mm	7mm
Carina	6mm	2mm
Sternum (top-low)	10-20mm	3mm – 8mm
Spina illiaca	10mm	2mm
Femur heads	6-8mm	3mm
Bladder	20-30mm	10mm
Coccygeum	10mm	6mm
Symphisis	10mm	2mm