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Overview

• Introduction: Medical imaging & Computer vision

• Breast cancer

– Quantitative mammography + analytics, dose

– Breast MRI

• Measuring therapy response

– Colorectal cancer

• What cures cancer?

– A cautionary tale: melanoma

– Angiogenesis

• Another cautionary tale about quantitation

– Shape and size of liver tumours



Medical 

Image 

Analysis
≠

Computer vision

+

clinical data

Medical image analysis addresses a specific medical 

problem:

• Working with clinicians

• What clinicians need

• What clinicians use

• The fundamental roles of models



Working with clinicians

Doctors specify the 

problem
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Doctors are unimpressed by 

mathematics, algorithm 

details, ….

Doctors are impressed by 

results that enable them to 

work better

Confidence builds slowly, but can drop 

like a stone

Algorithm: “this is 

a rapidly 

enhancing region, 

suggestive of 

cancer



What clinicians need

Tools they can trust & provide 

the information they need

Focal enhancement of FDG in liver*

*XD3, Mirada Medical Ltd.

Numbers!!!

It is recommended that the 

circumferential resection margin be 

at least 1mm if surgery is to be an 

option

Accuracy

Response to therapy:  1 2 1 2If error in measurement  is , then errori im m m    



Image quality

Poor SNR compared to vision 

cameras, subject to artefact (e.g. bias 

field)

Axial view of liver and pancreas (blue arrows) Coronal view of the liver

Poor sampling density:

• Partial volume effect

• Volume estimation and segmentation

• Interpolation? (Friday)

• Probability density function? (Friday)

The need to deliver accurate results, 24/7, 99.9% of the time, with poor SNR and 

sampling, massive variations across the normal population …  incorporate models



Clinical aspects of Cancer

• Breast cancer
 Breast density

 Microcalcifications

 Stellate masses

• Colorectal cancer
 circumferential resection margin

 lymph node analysis

 dceMRI & pharmacokinetic modeling

• Liver cancer
 bias correction 

breath hold

 time to enhancement

 morphology to aggressive mutation

Biological aspects of Cancer

• Angiogenesis
 Compartment model

 angiogenic switch

• Glycolysis
 quiescence

 pH control

• Hypoxia
 vascularity

 AKT/PTEN modulation of HIF

 relation to PET imaging

Image analysis methods

• Feature detection
 Phase congruency

 Monogenic signal

 scale-saliency

• Deformable registration
 Physiological constraints

• Probability density estimation
 Non-Parametric Windows 

• Level sets
 Bhattacharya flow

Models of image formation

• (x-ray) Mammography
 X-ray attenuation, Beer’s law

 Scatter 

• MRI
 T1 estimation

 bias correction

 contrast enhancement & pharmacokinetics

pharmacokinetic modelling

• PET/SPECT
 radioligand

gated PET 
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Cancer in Europe 2012

• New cases: 3.45M, deaths: 1.75M

• Cases

– Breast : 474,000 (deaths: 131,000)

– Colorectal: 447,000 (deaths: 215,000)

– Lung: 411,000 (deaths: 353,000)

Projections 

2030

UK lifetime risk of 

getting cancer will 

be 47% by 2020 

(44% in 2012)

By 2020, 38% will 

survive cancer to 

die of another 

cause (35% in 

2012)

Breast 29%
prostate 26%

lung 14%Colorectal 

13%



How many different kinds of cancer are there?

“There are more than 200 different types of cancer. You can develop 

cancer in any body organ. There are over 60 different organs in the body 

where a cancer can develop. Each organ is made up of several different 

types of cells.”

• Until 20th Century: 1

• 1990: over 100

• Today:

The word “cancer” was apparently first coined 

by Hippocratus, 1500BCE, because of the 

resemblance of the shape to a crab..
Mammogram spiculated mass



Breast cancer incidence

• In developed countries, 1 in 8 

women will get breast cancer at 

some point

• 23% of all cancers in women –

projected to rise to 29% by 2030

• Peak incidence is women over 60 

• In developing countries, including BRIC, 

numbers are rising rapidly, already 500,000 

cases in 2008 

• Reasons: increasing urbanisation, changes 

in lifestyle 

• Impacting particularly on younger women

Early detection + chemo/radio/conservative surgery + risk analysis is transforming 

morbidity



Personalised screening

Mammogram 74M annually world wide

Compare to previous mammograms

Computer-aided detection

Measure breast density

(as a surrogate of risk) 

Low density 

= low risk

Await next screening 

round (2-3 years)

High density = high risk

 stratification

Weigh the evidence 

scientifically

Breast 

ultrasound

Breast 

MRI



Mammogram



Breast density

• Mammography is only 48% effective in dense 

breasts, compared to 98% in fatty breasts

• 40% of women have dense breasts, 

postmenopausal, i.e. involution ineffective

• Breast density is a more significant risk factor 

than having a mother and sister with breast 

cancer

• Cancer recurrence is  four times more likely in 

women with dense breasts

• Perfect storm …

• BIRADS: the result of years of discussion by the 

American College of Radiology



Current Breast Density Classifications



BIRADS = cloud classification

1 2

3 4

Surely, we can do better?  Remember that we want numbers!



Breast Density Legislation

This is welcomed by women; but what 

are clinicians supposed to report??



Mammography: Image Parameter Dependence

29kVp 128mAs 28kVp 67mAs

RW: 35% 

ES: 50%

RW: 40% 

ES: 25%



Estimating breast density

Two of the UK’s most experienced breast radiologists each examined the two 

mammograms shown, to estimate the percentage of dense tissue.

BK estimated 25%;  TLS estimated 40% …. but it is the same breast!!!

Why is that?

Answer: the left image was exposed to x-rays twice as much as the right



In photography, we 

exploit exposure time, F-

stop, “film speed”, … to 

create a range of effects, 

and to highlight things 

that we are interested 

in…



First technological capability:

need for quantitative analysis in mammography

Intensity 3401 

SMF 4.3cm

0.4cm

Intensity 1728 

SMF 4.3cm

0.4cm

* SMF = Standard Mammogram Form

Starting 1994, with Ralph Highnam, I have invented a sequence of solutions to this 

problem: 

• hint(x) – a quantitative representation of the image – assigning to each pixel x

the amount of non-fat (interesting) tissue at that pixel location x;

• Volpara density – a fast, relative physics model developed by Matakina Ltd

Image intensity relates to anatomy in a very complex way, making quantitative

image analysis a hard problem.

29kVp 128mAs 28kVp 67mAs



First, a tiny bit of physics: Beer’s Law
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Note that the exiting fluence is the same 

irrespective of where, vertically, the block 

of attenuation µ2 is.

Mammography is fundamentally projective: though digital breast tomosynthesis is 

changing that…



A model of mammographic image formation

Output of a typical 

mammography x-ray 

tube

Radiation incident 

on upper plate

Radiation incident upon 

upper surface of breast

Radiation exiting 

the breast
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Highnam & Brady’s hint model

The literature tells us* that you cannot distinguish stromal tissue and 

tumours on the basis of their x-ray attenuations  two kinds of tissue: fat

& “interesting”.   If the compression between the plates is H cm, then at 

any given pixel x, we have 

Our job is to find              for every voxel x.  We know H and the tube 

parameters.

fat int( ) ( )H h h x x

int ( )h x

What can we find from the equation of photon fluence?:
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We measure 

this We know all this stuff

Compression 

plates – we 

know that too

The bit we 

don’t know!
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Volume-based Density Measurement

2cm, fibroglandular

4cm, fat

Imaging 

Physics cm

Volume of "interesting" tissue
Volumetric Breast Density

Volume of the breast




“Relative physics”
Highnam, Brady, Karssemeijer, and Yaffe

We have to know all those calibration parameters for 

Highnam and Brady’s method to work.  We can guess at 

lots of them.. BUT

Suppose we knew a region of the breast that was entirely 

fat... We could then use this as a “reference”

 obs fat

d

fat dense
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We need accurate breast 

inner/outer boundary 

segmentation .... We use 

phase congruency



Volume-based Methods for Density Measurement

Over 3,000,000 mammograms processed over past 12 months 

Sky 

analogy
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Volume-based methods for density measurement

Over 3,000,000 mammograms processed over past 12 months 

Sky 

analogy



Woman has a 

mammo

Woman can decide 

on supplementary 

screening before 

she leaves clinic.

+

Volpara breast 

density score 

immediately 

available

Patient stratification
Breast 

ultrasound

Breast 

MRI



Numbers provide statistical power

Remember:

• 74 million mammograms per year

• Density varies with population

• There may be genetic involvement beyond HER-2

• Analysis lends itself to cloud delivery



Management Information

Most large screening centres have multiple mammography units

• They vary by manufacturer, model, and vintage

• They may show variable results – but is this due to the population screened 

using that machine or due to the machine itself?



1       2       3      4        5       6         7       8       9     10     11 All

Quality control

Automated quality control of mammography machines, radiographers, 

population usage … all this needs statistical power to be meaningful

This provides usage statistics on individual radiographers 

(technologists in US parlance)

Operator 11 may need re-training….



Personalising x-ray dose calculation

2.1mGy

• X-ray dose is low in mammography, but

• Millions of women per year X minimal risk of excessive dose per woman = 

likelihood of x-ray induced cancer each year

• FDA MQSA requirements are that the mean glandular dose is under 3mGy for 

specific phantoms

• Women are not phantoms!

• Each manufacturer shows mean glandular dose (MGD) for each image, but

• Each manufacturer uses a different algorithm to estimate MGD

• Comparison machine/machine and model/model is nigh impossible

• Records of accumulated dose become highly suspect

• Calculate it using our mathematical model + DICOM header information

VolparaDose™ Personalized MGD As Reported – Hologic



Personalised screening

Mammogram 74M annually world wide

Compare to previous mammograms

Computer-aided detection

Measure breast density

(as a surrogate of risk) 

Low density 

= low risk

Await next screening 

round (2-3 years)

High density = high risk

 stratification

Weigh the evidence 

scientifically

Breast 

ultrasound

Breast 

MRI



Breast MRI uses contrast agent

No abnormal tissue visible
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Measuring T1

For a MRI gradient echo pulse sequence, one can derive a signal model: 
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Contrast agent

• Signal model

• Add effects of contrast agent (T1 & T2 alteration).
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… there are numerous other methods for estimating T1 and there are models for all 

other MRI pulse sequences, such as spin echo, …



Measuring effect of  chemotherapy

Pre- and post-chemotherapy

Percentage increase in intensity at right

Pre- and post-chemotherapy ΔT1 at left

Armitage, Brady and Behrenbruch, Medical Image Analysis (2005)

(non-rigid) registration and pre- and post-chemotherapy, from ΔT1 



Colorectal cancer: downstaging chemotherapy

bladder

mesorectum

anus & tumour Segmentation of mesorectum (blue), 

rectum/lumen (red); and tumour (green)

Most patients get down-staging chemotherapy prior to surgery

10% of patients who have surgery turn out to be complete responders to the 

chemotherapy; but still have the surgery (and the substantially negative impact on 

quality of life afterwards)

Can we tell who are most likely to be complete responders??



Colorectal cancer dceMRI : motion

Original data

Dr. M. Bhushan, Profs. Schnabel, Jenkinson, Brady



Simultaneous estimation of motion 

parameters and PK parameters

DCE image set

Estimate PK parameters 

at each voxel

Estimate & correct 

motion

There are numerous ways in which this cycle can be developed 

mathematically and implemented in an efficient algorithm.  The simplest is 

expectation-maximisation…though there are several others



Model-based Registration and Parameter Estimation 

(MoRPE)

M Bhushan et al. MICCAI’11,ISMRM’12



Motion correction of dceMRI volumes for 

colorectal cancer

Motion correctedOriginal data



Signal intensity curves

M Bhushan et al. MICCAI’11,ISMRM’12

In this case, the signal change and motion were simulated. ( ----- )

The simultaneous algorithm:

Two standard similarity criteria for deformable registration:   



Measuring therapy response

No discrimination for non-responder/

responder case using conventional 

normalised cross-correlation (NCC) 

registration

Increase in perfusion for responder vs

no change in non-responder case 

using MoRPE (PK model-based 

registration)

M Bhushan et al. MICCAI’11,ISMRM’12

Motion correction: Differences in Ktrans distributions 

before & after therapy



discrimination between responders 

& non-responders is not possible 

without motion correction

Without Motion Correction

Motion correction using our 

algorithm

Statistically significant* discrimination 

between responders & non-

responders

The importance of motion correction

M Bhushan et al. MICCAI’11,ISMRM’12
We use the Komogorov-Smirnov test, KS



What can currently cure cancer?

Radiotherapy; 40%

Chemotherapy ; 
11%

Surgery ; 49%

Radiotherapy

Chemotherapy

Surgery

Professor Sir Mike Richards, NCRI 2011

Can we define biological  processes that regulate or are markers of the responsiveness of 
tumours?

Can agents that target these processes be taken into the clinic to alter outcome?



Hanahan and Weinberg Hallmarks of Cancer



40-60% of patients with melanoma have 

activating mutations of BRAF – a proto-

oncogene that makes a protein B-RAF, which is 

involved in signalling in cells related to cell 

growth

PLX4032 (Vemurafenib) is an inhibitor of BRAF 

kinase

Vemurafenib targets the RAS-

RAF1-MEK-ERK pathway

An early example: Melanoma*

*Strictly: Chronic Mylogenous Leukaemia



Image of a BRAF-mutant melanoma

Man, 38 years old with a BRAF-

mutant melanoma

PET fluorodeoxyglucose (FDG) image



Before and two weeks after initiating PLX4032

PET imaging shows the impact of Vemurafenib



“This is one of the 

best examples I’ve 

ever seen of science 

triumphing over 

disease.” Brian 

Druker



Before treatment 15 weeks... 23 weeks...

Conclusion
....cancer is agile.. It rapidly learns to mutate to accommodate a new 

therapy.....

This is a salutary lesson … but it is not all such bad news….

…or so they thought



A bit of biology....

Cancers don’t just develop as aberrant processes within a cell, rather by a 

complex series of interactions with the cells in their neighbourhood, that 

form the normal epithelia.  

In normal tissue, these form the basement membrane

Tumour angiogenesis has many similarities to normal wound healing …



A picture of wound 

healing....

Pathway model



Above, left: 

normal; right 

chaotic 

(tumour is 

black)

Another 

rendition of 

chaotic & leaky 

neovasculature



Imaging angiogenesis: many targets!

Courtesy Dr. Neel Patel, Oxford



Integrins 'integrate' signals from the extracellular matrix (ECM) to the intracellular 

cytoskeleton in focal adhesions.  

In particular, the integrin αvβ3 mediates the migration of endothelial cells through the 

basement membrane during blood-vessel formation.  It binds to peptides containing the 

amino-acid sequence RGD*

* Arginine-Glycine-Aspartic acid

Integrin targeting for angiogenesis

18F-RGD PET-CT image of small renal 

tumoursCourtesy Dr. Neel Patel, Oxford



VEGF for inhibition of angiogenesis

Vascular Endothelial Growth Factors 

VEGF A-D are signalling proteins

Cellular response through the tyrosine 

kinase receptors (the VEGFR 1-3) on 

the cell surface

Courtesy Dr. Neel Patel, Oxford



A range of related targets

Rapamycin

Angiogenesis

VEGF

VEGFR



Imaging Avastin bound to SPECT emitter 124I

CT fused with SPECTSPECT



Biodistribution & 

immunohistochemistry

VEGF Avastin Autoradiograph

Courtesy Dr. Neel Patel, Oxford



Finally, a cautionary tale about quantitation

How are tumour progression/response measured?

Response Evaluation Criteria in Solid Tumours 

(RECIST)

For target lesions

• Choose up to 5 lesions, up to 2 per organ

• Add up longest diameters (LD) of non-nodal lesions 

(axial plane)

• Add short axis diameters of nodes

• This is the “sum of the longest diameters” (SLD)



(Liver) tumour shape pre-chemotherapy

Eng Sci, Surgery, Radiology, Pathology, Clin Pharm, Mathematics, WIMM, GE Healthcare



Liver tumour shape post-chemotherapy, 9 months later

Eng Sci, Surgery, Radiology, Pathology, Clin Pharm, Mathematics, WIMM, GE Healthcare



pre-ablation, another 3 months later

Eng Sci, Surgery, Radiology, Pathology, Clin Pharm, Mathematics, WIMM, GE Healthcare



Tumour Growth Model

• Early tumour masses are often approximately spherical and 

grow as spheres.  Mathematical models treat this case.

• They can sprout additional spheres (this corresponds, 

biologically, to clonal expansion)

• Heterogeneous tumours with multiple clonal centres may 

demonstrate variations in response to therapy (i.e. resistant 

clones)

• Can we relate morphological changes, determined from 

images, to underlying cancer growth processes?

Olivier Noterdaeme, Dr. Matt Kelly, Mike Brady, and numerous clinicians

recent examples from the Churchill The shape of the resected specimen

We conjecture that shape and shape changes encode the evolution, mutations, and 

severity of a tumour



Tumour growth model
Clinical case from Churchill: growing metastatic colorectal (Dukes B) tumour

Spheroid fit after 9 

months of 

chemotherapy

Tumour shape after 3 

more months

9 month spheroids 

centred on 12 month 

shape

9 month spheroids 

grown (red) and 

static/shrunk (black)

The tumour growth model gives a plausible account of tumour morphology; but the key 

question remains: do the successively sprouted clonal centres correspond to increasingly 

severe mutations of the original tumour DNA?

More precisely, we conjecture that the genomes of samples within a spheroid will show minor 

variation; but that the genomes of samples from different spheroids will have substantial 

variation.

Noterdaeme, Kelly & Brady 2008



Pre-resection CT (6 slices shown)

3D model of tumour DNA extraction (proteinase K 

digestion & purification).  

Nuffield Department of Clinical Laboratory Sciences

array Comparative Genomic Hybridization (aCGH), 
NimbleGen, Iceland

385,000 probes of a sample 17.4mm X 13mm  6270 

base pairs analysed

This shows the amplification of each of the genes in each of 

the chromosomes of the particular DNA sample – in this 

case from the turquoise spheroid

Noterdaeme, Kelly & Brady 2008



312 and 313 are from the same 

spheroid, and show similar 

amplification of chromosomes 2, 7, 

10

318, 319 are both from another 

spheroid and show similar 

amplification of chromosomes 7, 8, 

10, 14, and 20

Log2 intensity ratios as a function of chromosome position for 7 hybridisations.

Horizontal axis is chromosome number; vertical axis is log intensity ratio – higher 

values show amplification of a particular chromosome = significant changes of the 

DNA sequence in the genes that make up the chromosome.

More importantly, note that the amplification pattern is different for the two 

spheroids – this finding is repeated for all distinct spheroids.

We have linked developing tumour shape to increasing DNA mutations



So what?
Current clinical practice assesses tumour response to therapy using RECIST –

Response Evaluation Criteria in Solid Tumours.

Disease progression ≡ increase by at least 20% in longest linear dimension

Disease response ≡ decrease by at least 30% in longest linear dimension

Otherwise, disease is considered to be stable

9 month tumour shape 12 month tumour shape

According to RECIST, 

stable disease

According to our 

model, the tumour has 

shown some response 

(green) but there is 

evidence of 

aggressive growth in 

a new spheroid



Conclusions

• Medical image analysis involves difficult image analysis 

challenges

• Doctors need numbers, error bars, results that enable 

them to do their jobs better

• Doctors couldn’t care less about mathematics or 

algorithms, just results

• Models enable measurements in mammography, breast 

MRI, colorectal MRI, angiogenesis, and clonal expansion 

of tumours

• Measurements can also be misleading



Books on Cancer

Great introduction to cancer 

biology.  Updated in 2013.

Wonderful popular 

history of cancer.  Well 

worth buying.

A recent book, very well 

written, intermediate 

between the other two.


